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Summary

Microeconomic data often have within-cluster dependence, which affects stan-
dard error estimation and inference. When the number of clusters is small,
asymptotic tests can be severely oversized. In the instrumental variables (IV)
model, the potential presence of weak instruments further complicates hypothe-
sis testing. We use wild bootstrap methods to improve inference in two empirical
applications with these characteristics. Building from estimating equations and
residual bootstraps, we identify variants robust to the presence of weak instru-
ments and a small number of clusters. They reduce absolute size bias signifi-
cantly and demonstrate that the wild bootstrap should join the standard toolkit
in IV and cluster-dependent models.

1 INTRODUCTION

Microeconometric data often have a group structure. When regression errors are correlated within these groups or clus-
ters, it is well known that variance estimates can be biased and that hypothesis testing can be misleading. The common
solution to this problem is to use cluster-robust standard error estimation methods whose asymptotic properties rely on a
large number of clusters. When the number of clusters is small, the rejection rates of tests can be well above their nominal
levels even when cluster-robust standard errors are used (see Cameron, Gelbach, & Miller, 2008).

In the linear instrumental variables (IV) model, statistical inference is further complicated by the possibility of weak
instruments. Several tests have the correct size asymptotically when the instruments are weak, such as the cluster-robust
versions of the Anderson and Rubin (1949) (AR), Kleibergen (2002) Lagrange multiplier (KLM), and Moreira (2003)
conditional likelihood ratio (CLR) tests.1 We show in our Monte Carlo experiments, however, that these tests experience
the same size distortions as the Wald test does when the number of clusters is small, even when instruments are strong.

Bootstrap methods can improve the reliability of inference when sample sizes are small. The works of Cameron et al.
(2008), Kline and Santos (2012), and MacKinnon and Webb (2019) highlight the use of bootstrapping to improve inference
when there is intra-cluster dependence in the linear model with only exogenous covariates. They show that a variant of Wu
(1986) wild bootstrap method with cluster-based sampling performs well in a variety of cases, and bootstrap tests dominate
the asymptotic tests in terms of size. It is well known, however, that bootstrapping cannot improve the performance of
the Wald test when instruments are weak (Davidson & MacKinnon, 2008; Moreira et al., 2009; Zhan, 2018).

In this study, we focus on two problems. The first is that, with few clusters, the asymptotic critical values for the tests
can be poor approximations of the corrected finite-sample critical values. The second is the potential presence of weak
instruments, which make inference unreliable even for a large number of clusters. Therefore, we propose wild bootstrap

This article has been contributed to by US Government employees and their work is in the public domain in the USA.
1Other statistical tests have asymptotic and nominal size equality independent of the presence of weak instruments, such as the conditional linear
combination test of I. Andrews (2016).
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methods for the AR test that can make inference more reliable when the number of clusters is small and instruments are
potentially weak.

We use two applications from prominent political economy studies to explore the importance of accounting for few
clusters in the IV model: the effect of institutions on economic growth discussed by Acemoglu et al. (2012) and the impact
of the economy on civil conflict discussed by Miguel et al. (2004). In these applications, the specifications vary in terms
of the number of clusters, the instrument strength, and the controls. We find large differences between the confidence
sets derived from the asymptotic and bootstrap tests, even in cases where the effective F-test of Olea and Pflueger (2013)
is above the 5% critical value. Bootstrapping, therefore, is consequential for inference in specifications that add controls,
stratify the sample, reduce sample variation, or reduce the number of clusters. We recommend that our wild bootstrap
tests be used as diagnostic tools and to conduct inference in situations where there is any uncertainty about the effect of
cluster sampling or instrument weakness.

We perform extensive Monte Carlo simulation experiments to explore the performance of our bootstrap methods. We
consider data-generating processes (DGPs) with various error distributions, increasing heterogeneity among errors, and
different cluster sizes and instruments. We find rejection rate levels as high as 50% with the cluster-robust Wald test
when the nominal level is 5% in a strong-instrument scenario with 20 clusters. With our cluster estimating equations and
residuals bootstraps, we obtain rejection rates that are very close to the nominal levels in the same experiments.

Our methods tackle a number of challenges examined in isolation in previous studies. For example, Gelbach, Klick,
and Stratmann (2009) propose a variant of the wild cluster bootstrap method of Cameron et al. (2008) for the Wald test in
an IV setting that is valid only if the instruments are strong. Davidson and MacKinnon (2008) propose several bootstrap
techniques for linear IV models assuming that the residuals are homoskedastic, and they further extend these techniques
by allowing residual heteroskedasticity, but only at the individual level (Davidson & MacKinnon, 2010). Using Edgeworth
expansions, Kleibergen (2011) shows that the bootstrap method decreases the size distortion of the AR test.

In Section 2, we establish a minimal model to frame the discussion of inference in a cluster-sample IV model. Section
3 discusses empirical applications of the proposed bootstraps. More detailed descriptions of the tests and their bootstrap
counterparts are in Sections 4 and 5. In Section 6, we present the simulation design and Monte Carlo experiment results.
Several bootstrap methods, including the ones for the KLM and CLR tests, and further simulation evidence are included
in the online supplement that accompanies this manuscript (Supporting Information).

2 CLUSTER-ROBUST INFERENCE IN A SIMPLE IV MODEL

A simple linear IV model of cluster-sample data with G clusters is{
y1,g = y2,g𝜃 + ug

y2,g = zgΠz + vg
forg = 1, … ,G, (1)

where y1,g, y2,g, zg, ug, and vg are ng × 1 vectors, and ng is the number of observations in cluster g. The total sample size is
n =

∑G
g=1 ng. We assume that the errors have an arbitrary covariance structure within clusters but are independent across

clusters. To simplify the exposition, we exclude exogenous regressors, multiple endogenous variables, and multiple instru-
mental variables. In this problem, the IV estimator is �̂�IV =

(
Z′y2

)−1Z′y1, where Z=
[
z′1, … , zG

]′, y2=
[
y′

2,1, … , y′
2,G

]′
,

and y1=
[
y′

1,1, … , y′
1,G

]′
are n × 1 vectors.

When the errors are assumed to be independent and identically distributed (i.i.d.), the estimator of the variance
is v̂arh(�̂�IV) = �̂�2

u
(
y′

2PZy2
)−1, where �̂�2

u = 1
n

û(�̂�IV)′û(�̂�IV) and û(�̂�IV) = (y1 − y2�̂�IV).2 However, in the presence of
intra-cluster dependence, even if this dependence is negligible, we can use the same arguments as in Moulton (1990)
to show that v̂arh(�̂�IV) underestimates the variance of �̂�IV. The most commonly used estimator of var(�̂�IV) is v̂ar

(
�̂�IV

)
=(

Z′y2
)−1

[∑G
g=1 z′gûg(�̂�IV)ûg(�̂�IV)′zg

] (
Z′y2

)−1 where ûg(�̂�IV) = y1,g − y2,g�̂�IV is the vector of IV residuals for the gth cluster.
This estimator is an adaptation of the Huber–White heteroskedastic-robust sandwich estimator (Arellano, 1987; White,
1980), which does not impose any structure on the variance of the error term.

2We use the notations PA and MA for the projection matrices PA =A(A′A)−1A′ and MA = I-PA throughout the text.
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We are interested in making inference about 𝜃. For example, we may want to test the following hypotheses: H𝜃
0 ∶ 𝜃 =

𝜃0 against H𝜃
1 ∶ 𝜃 ≠ 𝜃0. The Wald test for the structural parameter is

W (𝜃0) =
(
�̂�IV − 𝜃0

)2

v̂ar
(
�̂�IV

) d
−−→ 𝜒2(1),

where
d
−−→ indicates convergence in distribution as G → ∞ and 𝜒2(1) is the 𝜒2-distribution with one degree of freedom.

The null assumption is rejected if W (𝜃0) > 𝜒2
1,1−𝛼 , where 𝜒2

1,1−𝛼 is the 1 − 𝛼 quantile of the 𝜒2(1)-distribution.
As the instrument zg becomes weakly correlated with the endogenous variable y2,g (Πz → 0), the IV estimator �̂�IV

becomes inconsistent. Consequently, the Wald test does not have the correct asymptotic size (Staiger & Stock, 1997).3
Olea and Pflueger (2013) propose the effective F-test for testing instrument weakness when errors are clustered, but only
for the case of one endogenous variable.4

Instead of pretesting instrument strength before computing the Wald test, we can simply use a test that is asymptotically
valid independent of whether the instrument is strong or not. Consider now the following representation of model 1:{

Yg (𝜃0) = zg𝛿z (𝜃0) + eg (𝜃0)
y2,g = zgΠz + vg

for g = 1, … ,G, (2)

where Yg (𝜃0) = y1,g − y2,g𝜃0, 𝛿z (𝜃0) = (𝜃 − 𝜃0), and eg (𝜃0) = ug + vg𝛿z (𝜃0). The parameter 𝛿z (𝜃0) is consistently estimated
by the ordinary least squares (OLS) estimator 𝛿z (𝜃0) =

(
Z′Z

)−1Z′Y (𝜃0), independent of the value of Πz.
We can test H𝜃

0 ∶ 𝜃 = 𝜃0 indirectly by testing H𝛿
0 ∶ 𝛿z (𝜃0) = 0. This test, the cluster-robust AR test, is defined as

AR(𝜃0) =
[
𝛿z (𝜃0)

]2

v̂ar
(
𝛿z (𝜃0)

) d
−−→ 𝜒2(1),

where v̂ar
(
𝛿z (𝜃0)

)
=

(
Z′Z

)−1
[∑G

g=1 z′gêg(𝜃0)êg(𝜃0)′zg

] (
Z′Z

)−1 is the variance estimator of 𝛿z (𝜃0) and êg(𝜃0) = Yg (𝜃0) −

zg𝛿z (𝜃0). The AR test can serve as an alternative to the Wald test, and it has the correct size regardless of instrument
strength.

The distributions of statistical tests based on the cluster-robust variance estimator, however, can differ considerably
from their asymptotic distributions. Young (2016) and Imbens and Kolesár (2016) show that the cluster-robust estimator of
the variance is downward biased in the linear regression with just exogenous covariates, which is the case of v̂ar

(
𝛿z (𝜃0)

)
.

Consequently, cluster-robust statistical tests overreject the null hypothesis when it is true. Those studies propose correc-
tions that “inflate” the variance estimator. Our simulation experiments in Section 6.2 also show that the cluster-robust
Wald and AR test rejection rates are well above the nominal levels under the true null assumption. Instead of correcting
the variance, we simply bootstrap the statistical tests to obtain a better approximation of the critical value.

In the following section, we illustrate the differences between the confidence sets obtained from the asymptotic
and bootstrap cluster-robust tests using the applications of Acemoglu, Johnson, and Robinson (2001) and Miguel et al.
(2004).

3 APPLICATIONS

In the applications that follow, we explore prominent studies that (1) use IV models, (2) incorporate cluster-sample data
with a small number of clusters, and (3) have a risk of weak instruments. We estimate 95% confidence intervals and regions
for the structural parameters that are derived from inverting the cluster-robust Wald (Wald Asymp.), Wald multi-equation
efficient bootstrap (Wald ME-eff), cluster-robust AR (AR Asymp.), and AR single-equation efficient bootstrap (AR SE-eff)
tests. The 95% confidence intervals and sets are formed by the points in the parameter space that do not reject the null
hypothesis of being the true parameter at a significance level of 5%. The bootstrap tests impose the null hypothesis for the

3These authors also suggest that a first-stage F-test below 10 indicates weak instruments when the errors are i.i.d. This value has become a com-
monly used rule-of-thumb by practitioners. However, Bun and de Haan (2010) show that, with a nonscalar error covariance structure, the use of the
rule-of-thumb for the standard and the cluster-robust first-stage F-tests combined is a poor guide for detecting instrument strength. I. Andrews, Stock,
and Sun (2019) survey manuscripts published at the American Economic Review from 2014 to 2018, and find clear evidence that authors and journals
favor specifications that satisfy this rule-of-thumb even when residuals are heteroskedastic.
4Stock and Yogo (2005) and Sanderson and Windmeijer (2016) propose similar tests under the assumption that the residuals are homoskedastic.
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bootstrap DGP and use Rademacher weights for sampling the residuals. The AR SE-eff and the Wald ME-eff bootstraps
are described in Section 5 below and Section S.5 in the Supporting Information Supplement.

3.1 Application 1: The colonial origins of comparative development
Our first application comes from Acemoglu et al. (2001). In that study, the specifications have only one endogenous
explanatory variable and one excluded instrument, with a maximum of 36 clusters.

Acemoglu et al. (2001) study how institutions, as measured by an appropriation risk score, affect economic performance.
Identifying the effect of institutions is confounded by its simultaneity with growth and by omitted variables that may
affect both variables. The authors argue that the mortality rates faced by Europeans affected their willingness to establish
settlements and their choice of colonization strategy. Places where mortality rates are high are likely to have extractive
institutions, whereas healthy places are prone to have better economic and political institutions. Therefore, the settler
mortality rate would be a good instrument for the institutions variable.

Information about mortality rates is based on historical settler mortality measures, and aggregated regional measures
are allocated to match modern countries. In this exercise, one mortality rate can be assigned to several countries (e.g.,
Latin American and West African countries). Therefore, countries that share the same settler mortality rate constitute a
cluster and, consequently, have the same common instrument.

TABLE 1 Asymptotic and bootstrapped confidence intervals from a replication of Acemoglu et al. (2012)
Specification Original AJR series ARJ mortality series, ARJ mortality series, ARJ mortality series,

capped at 250 capped at 250; capped at 250; capped at 250;
Albouy campaign minimal correction extended correction

dummy to Albouy to Albouy
campaign dummy campaign dummy

Tab. 1, col. 2 Tab. 3, col. 2 Tab. 3, col. 4 Tab. 3, col. 6
Statistic Method (1) (2) (3) (4)

No covariates, (G = 36, n = 64)
Wald Asymp. [0.55, 1.08] [0.43, 1.30] [0.48, 1.19] [0.53, 1.08]

ME-eff. [0.56, 1.21] [0.47, 1.53] [0.52, 1.39] [0.55, 1.22]
AR Asymp. [0.61, 1.46] [0.56, 2.04] [0.59, 1.94] [0.59, 1.51]

SE-eff. [0.61, 1.48] [0.53, 2.24] [0.58, 1.80] [0.59, 1.53]
Feff Asymp. 28.1 13.8 19.2 26.3

With latitude, (G = 36, n = 64)
Wald Asymp. [0.51, 1.08] [0.34, 1.35] [0.41, 1.22] [0.50, 1.08]

ME-eff. [0.48, 1.24] [0.35, 1.74] [0.42, 1.46] [0.48, 1.26]
AR Asymp. [0.54, 1.67] [0.47, 2.91] [0.50, 2.06] [0.53, 1.65]

SE-eff. [0.50, 1.61] [0.16, 3.65] [0.40, 2.44] [0.51, 1.68]
Feff Asymp. 19.3 9.4 13.7 19.7

Without neo-Europes, (G = 33, n = 60)
Wald Asymp. [0.50, 1.58] [0.36, 1.90] [0.44, 1.79] [0.48, 1.59]

ME-eff. [0.52, 2.02] [0.46, 2.86] [0.49, 2.38] [0.52, 2.16]
AR Asymp. [0.65, 2.95] [0.60, 3.77] [0.61, 3.22] [0.62, 3.35]

SE-eff. [0.64, 2.89] [0.52, 5.64] [0.55, 4.32] [0.60, 3.26]
Feff Asymp. 11.3 6.9 8.6 10.3

Without Africa(G = 19, n = 37)
Wald Asymp. [0.41, 0.80] [0.39, 0.93] [0.40, 0.87] [0.41, 0.81]

ME-eff. [0.40, 0.92] [0.43, 1.28] [0.40, 1.13] [0.41, 0.92]
AR Asymp. [0.39, 1.03] [0.46, 7.66] [0.43, 2.08] [0.40, 1.06]

SE-eff. [0.42, 1.03] [0.48, 2.90] [0.46, 1.71] [0.44, 1.25]
Feff Asymp. 46.0 23.0 37.5 51.1
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TABLE 1 Continued
Specification Original AJR series ARJ mortality series, ARJ mortality series, ARJ mortality series,

capped at 250 capped at 250; capped at 250; capped at 250;
Albouy campaign minimal correction extended correction

dummy to Albouy to Albouy
campaign dummy campaign dummy

Tab. 1, col. 2 Tab. 3, col. 2 Tab. 3, col. 4 Tab. 3, col. 6
Statistic Method (1) (2) (3) (4)

With continent dummies(G = 36, n = 64)
Wald Asymp. [0.38, 1.19] [0.32, 1.31] [0.35, 1.29] [0.38, 1.20]

ME-eff. [0.35, 1.36] [0.33, 1.66] [0.34, 1.54] [0.35, 1.41]
AR Asymp. [0.38, 1.61] [0.37, 2.25] [0.37, 1.76] [0.38, 1.62]

SE-eff. [0.27, 1.64] [0.24, 2.54] [0.24, 1.92] [0.26, 1.73]
Feff Asymp. 10.6 6.8 8.6 9.9

With continent dummies and latitude(G = 36, n = 64)
Wald Asymp. [0.33, 1.28] [0.25, 1.42] [0.28, 1.40] [0.33, 1.27]

ME-eff. [0.24, 1.40] [−0.05, 2.00] [0.17, 1.68] [0.23, 1.36]
AR Asymp. [0.23, 1.66] [0.21, 3.50] [0.26, 2.03] [0.24, 1.56]

SE-eff. [−0.05, 1.77] [−0.25, 8.64] [−0.21, 2.43] [−0.04, 1.68]
Feff Asymp. 7.7 4.8 6.1 7.6

With percent of European descent in 1975(G = 36, n = 64)
Wald Asymp. [0.34, 1.07] [0.13, 1.34] [0.23, 1.21] [0.32, 1.07]

ME-eff. [0.28, 1.21] [0.14, 1.84] [0.06, 1.43] [0.21, 1.27]
AR Asymp. [0.18, 1.45] [0.14, 3.69] [0.05, 1.75] [0.09, 1.37]

SE-eff. [0.13, 1.49] [−0.10, 5.34] [−0.03, 2.27] [0.03, 1.47]
Feff Asymp. 12.9 6.2 9.9 12.8

With malaria, (G = 35, n = 62)
Wald Asymp. [0.24, 0.80] [0.00, 0.96] [0.16, 0.88] [0.25, 0.80]

ME-eff. [0.23, 0.95] [−0.78, 1.17] [−0.05, 1.09] [0.23, 0.94]
AR Asymp. [0.06, 1.15] (−∞, +∞) (−∞, +∞) [0.05, 1.15]

SE-eff. [−0.61, 1.40] (−∞, +∞) [−2.44, −2.42] ∪ [−0.84, −0.80] ∪
[−2.39, 2.63] [−0.66, 1.31]

Feff Asymp. 11.5 5.8 8.5 12.0

Note. ME-eff is the Wald efficient multi-equation residual bootstrap test (see Supporting Information Supplement Section S.5.5). SE-eff is the AR efficient
single-equation residual bootstrap test (see Section 5.2). The wild bootstraps use Rademacher resampling weights. The critical values of the effective F-test are 23.1
(5%) and 19.7 (10%) under a 10% tolerance for bias, and 15.1 (5%) and 12.4 (10%) under a 20% tolerance for bias. This test sets the ratio of the Nagar bias of the
TSLS over the worst-case-scenario bias. If this ratio is above the threshold, then the instruments are weak. As the bias tolerance increases, the critical value of the
effective F-test decreases.

We choose to replicate some specifications from the Acemoglu et al. (2012) reply to the Albouy (2012) comment. The
exchange is relevant here because one of the issues of contention is the ability of the instrument to identify the effect of
institutions on economic growth. Both studies use a cluster-robust AR statistic.5

We work with mortality rates capped at 250 per 1,000 per annum, because several specifications with uncapped rates
result in unbounded confidence intervals for both the asymptotic and bootstrap tests. We also focus on specifications that
contain a correction for the mortality rate, which is one major criticism of the results of Acemoglu et al. (2012). The correc-
tion consists of the inclusion of a dummy “campaign” variable as another control. Albouy (2012) argues that the mortality
rates during peacetime and “campaign” episodes are not the same. This correction reduces sample variation, affecting
the instrument's identification power, giving us a broad set of practical situations, and demonstrating how instrument
strength and cluster structure interact to affect inference.

The results are in Table 1. The first column contains the baseline specifications with no correction for mortality rates.
The second column has the same specifications with the correction suggested by Albouy (2012). The third and fourth
columns show the results with the minimal and extended corrections of the campaign dummy proposed in Acemoglu et al.
(2012). Along the rows of Table 1, the specifications vary according to different sets of regression controls and samples.

5The original Acemoglu et al. (2001) study used the Wald statistic for inference, without any adjustment for heteroskedasticity.
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TABLE 2 Summary of p-values for H0 ∶ 𝜃0 = 0 from a replication of Acemoglu et al. (2012)

Original AJR
series

ARJ mortality series,
Albouy campaign

dummy

ARJ mortality series,
minimum correction
to Albouy campaign

dummy

ARJ mortality series,
extended correction
to Albouy campaign

dummy

Specification
AR

asym.
AR wild

boot.
AR

asym.
AR wild

boot.
AR

asym.
AR wild

boot.
AR

asym.
AR wild

boot.

No covariates 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.000
With latitude 0.006 0.004 0.003 0.031 0.002 0.016 0.006 0.007
Without neo-Europes 0.001 0.000 0.000 0.006 0.001 0.004 0.003 0.004
Without Africa 0.009 0.021 0.013 0.002 0.014 0.005 0.009 0.020
With continent dummies 0.009 0.019 0.010 0.019 0.008 0.021 0.009 0.022
With continent dummies 0.024 0.059 0.030 0.075 0.020 0.073 0.023 0.058
and latitude
With percent of European 0.032 0.026 0.030 0.065 0.045 0.057 0.041 0.043
descent in 1975
With malaria 0.043 0.080 0.093 0.045 0.076

Note. Wild bootstrap p-values are from the AR efficient single-equation residual bootstrap test using Rademacher weights (see Section 5.2). Underlines indicate
whether the test is not rejected at the 1% significance level, 5% level, level, or level. Mortality rates have been capped at 250 deaths per year per 1,000
population.

The same table also reports the effective F-test, which is the same as the cluster-robust first-stage F-test when only one
instrument is present and illustrates the variation in instrument strength across specifications. The critical values of
the effective F-test are included in the table's notes. Compared with column (1), the instrument strength measured by
the effective F-test drops considerably when controlling for Albouy's “campaign” dummy and remains the same with the
extensive correction proposed by Acemoglu et al. (2012).

We first note that the AR asymptotic confidence intervals are larger than the Wald asymptotic confidence intervals
in all cases and that the Wald interval is not always a subset of the AR interval. For example, in column (4) with the
latitude control, the Wald confidence interval is [0.50, 1.08], whereas the AR interval is [0.53, 1.65]. The cluster-robust AR
confidence interval is 93% larger than the Wald confidence interval, even though the effective F-statistic is 19.7, which
rejects instrument weakness at 5% and 10% significance levels under 20% and 10% tolerance bias, respectively.

The AR bootstrapped confidence intervals are of the same or smaller magnitude than the AR asymptotic confidence
intervals when the effective F-tests are large. For example, columns (1)–(3) of the specification without African countries
have effective F-tests equal to or above 23, which is approximately the 5% critical value of this test with a tolerance bias
of 10%.

On the other hand, with an effective F-test below 12.4, which is the 10% critical value under 20% bias tolerance, the
AR bootstrapped confidence intervals in general have larger lengths than the asymptotic ones do, as illustrated by the
specifications with continent dummies and latitudes, those with the percentage of European descent in 1975, and those
with malaria. In most of these specifications, the asymptotic AR confidence intervals are a segment located on the positive
side of the real line, whereas the bootstrapped confidence intervals stretch to negative values as well. These latter results
indicate that the effect of institutions on growth is not statistically significant. We even observe cases with disjoint AR
bootstrapped confidence intervals, as in columns (3) and (4) for the specification with malaria.

Finally, we observe that the Wald bootstrapped confidence intervals are larger than their asymptotic counterparts. These
differences can be substantial when the instrument is undoubtedly strong, as suggested by the effective F-test. This is
illustrated by the specifications with no covariates and without African countries in both columns (1) and (4), which have
effective F-tests above 23. The Wald bootstrapped confidence intervals are at least 27% larger than the asymptotic ones.
When the instruments are weak, and, consequently, inference with Wald tests is unreliable, the differences are even more
pronounced.

To further investigate the statistical significance of institutions on growth, we report in Table 2 the p-values for testing
H0 ∶ 𝜃 = 0 across the specifications. The underlines indicate if the test is not rejected at the 1% significance level (one
underline), the 5% level (two underlines), the 10% level (three underlines), and the 20% level (four underlines).

Focusing firstly on the asymptotic AR test, the majority of specifications indicate significance of the institutional effect
on growth at the 1% significance level. When we include Albouy's “campaign” dummy the same effect becomes sta-
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tistically insignificant at the same level. Using the extended correction to Albouy's “campaign” dummy proposed by
Acemoglu et al. restores the significance of the institution effect. There is an increasing pattern from the AR to the
bootstrapped AR p-values, which shows a less significant effect of institutions on growth. For example, in the specifi-
cations with the extended correction to the Albouy campaign dummy, the effect of institutions on growth is significant
using the asymptotic AR test at the 1% significance level for most cases, but insignificant at the same level using the AR
bootstrap test.

We can draw one important conclusion from this application: Tests based on the asymptotic critical values can mis-
guide inference. As we would expect, the weaker the instrument, the larger the confidence intervals, and the larger the
differences between the asymptotic and bootstrapped confidence intervals. With effective F-tests below 12.4, however,
we can still estimate bounded confidence intervals and obtain useful information about the structural parameter. The
misguidance provided by asymptotic tests can also occur even when the instruments are strong according to the effective
F-test.

3.2 Application 2: Civil war
The second application comes from Miguel et al. (2004). This example is interesting because the AR statistic uses a null
hypothesis with joint restrictions on two endogenous variables. The resulting confidence sets are two-dimensional areas
that need not be convex. A challenge with this application is that the literature has not yet developed a weak instrument
test similar to the one from Olea and Pflueger (2013) for the case of multiple endogenous variables. However, we can still
rely on the AR test to conduct inference of the structural parameter whether or not instruments are weak.

Miguel et al. (2004) investigate the relationship between economic conditions and civil war in sub-Saharan Africa. In
particular, they study how the deterioration of the economic environment affects the probability of civil conflict. Endo-
geneity bias may arise from the simultaneity of government institution quality, economic performance, and civil war. The
authors use variation in rainfall as an instrument for economic performance, which is salient because of the reliance on
subsistence agriculture in the sample countries. The data consist of an unbalanced panel of 41 African countries from
1981 to 1999, with 743 total observations, averaging 18.6 observations per country. The primary models have a binary
measure of civil war as an outcome, current and lagged economic performance as endogenous variables, and current and
lagged rainfall growth as instruments.6 The original study does not report tests that are robust to the presence of weak
instruments.

Figure 1 shows asymptotic and bootstrapped Wald and AR confidence sets for three specifications in Miguel et al.
(2004). The left-hand column shows Wald confidence sets, and the right-hand column shows the corresponding AR sets.
The gray areas are the 95% asymptotic confidence sets, and the black lines show the bootstrapped 95% confidence sets. In
the figures, 𝜃1 is the current economic growth rate, and 𝜃2 is the lagged economic growth rate. The parameter estimates
are the center points of the asymptotic Wald sets. The specifications only differ with respect to the dependent variables.

Figure 1 also reports the Kleibergen and Paap (KP) rank test (Kleibergen & Paap, 2006). The KP test tests the hypothesis
thatΠz in Equation 1, which is a matrix in the case of multiple endogenous variables, has reduced rank. If the KP test is not
rejected, then 𝜃 is underidentified. On the other hand, if we reject the KP test, we cannot conclude that the instruments
are strong.7

The first row of Figure 1 is a replication of Table 6, column 1, in which the dependent variable is the PRIO/Uppsala
indicator for the onset of civil conflict. The bootstrapped Wald confidence set is somewhat larger than the asymptotic set.
Although the KP rank is rejected at the 0.01% significance level, the instruments are relatively weak, which is reflected in a
much larger asymptotic AR confidence set. Once we account for the cluster structure by bootstrapping, the AR confidence
set blows up. Accounting for the combination of weak instruments and a moderately small number of clusters makes
inference difficult.

The second row of Figure 1 is a replication of Table C3, column 4, in which the dependent variable is the Doyle and
Sambanis indicator for periods with major civil conflicts (more than 1,000 deaths). In this specification, the KP rank
statistic is larger. Bootstrapping the Wald statistic leads to a similar expansion of the confidence set. For the AR test,
bootstrapping causes expansion, but here the expansion is all in one direction in the parameter space—toward a negative

6All of the models that we replicate include country fixed effects and country-specific time trends.
7I. Andrews et al.'s (2019) survey shows that practitioners compute the KP test and compare it to the critical values of the Stock and Yogo (2005) weak
instrument test, because the KP test reduces to the (robust) first-stage F-test in the case of one endogenous variable.
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FIGURE 1 Asymptotic and bootstrapped 95% Wald and AR confidence sets from a replication of Miguel et al. (2004): (a) PRIO/Uppsala
(G = 40, n = 555, rkKP = 11.62, p-value rkKP

= 6.52 × 10−4); (b) Doyle and Sambanis (G = 40, n = 724, rkKP = 18.64, p-valuerkKP
= 1.6 × 10−5);

(c) Fearon and Laitin (G = 41,n = 743, rkKP = 18.69, p-value rkKP
= 1.5 × 10−5). In all specifications, 𝜃1 is GDP growth, 𝜃2 is lagged GDP

growth, the included instruments are country-specific fixed effects and time trends, and the excluded instruments are growth in rainfall and
lagged growth in rainfall. The first, second, and third rows correspond to specifications in Table 6, column 1; Table C3, column 4; and Table
C3, column 5 from the original paper. The Wald confidence sets come from the Wald efficient multi-equation residual bootstrap test (see
Supporting Information Supplement Section S.5.5). The AR confidence sets come from the AR efficient single-equation residual bootstrap
test (see Section 5.2). The test statistics in the captions are asymptotic. rkKP is the Kleibergen and Paap (2006) rank statistic
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estimate of 𝜃1 and a positive estimate of 𝜃2, which has no meaningful economic interpretation and is inconsistent with
the original paper. The starkest takeaway from the confidence sets is the expansion to implausibly large parameter values.

The third row of Figure 1 is a replication of Table C3, column 5, which has the same dependent variable concepts but
uses the Fearon and Laitin measure of civil conflict. Here we see interesting patterns in how inference is affected by the
use of joint null hypotheses. The bootstrapped Wald confidence set expands only for 𝜃1, and mainly in a direction that no
longer supports the paper's conclusions. For the AR set, the uncertainty about 𝜃2 depends greatly on the value of 𝜃1.

In Section S.1 of the Supporting Information Supplement, we report results for the first-stage F-test, the (projected)
confidence intervals, and the p-values of the joint statistical significance of 𝜃 = (𝜃1, 𝜃2). Overall they indicate the statistical
insignificance of the effect of economic conditions on civil war, which is contrary to the findings of the original paper.

4 TESTING STRUCTURAL PARAMETERS WITH CLUSTERED ERRORS
AND WEAK INSTRUMENTS

We now present the general case of the Wald and AR tests derived from models with more than one endogenous variable
and several included and excluded instruments. The bootstrap versions of these tests are in the following section.8

With multiple endogenous explanatory variables and exogenous controls, the general representation of the simple
cluster model (Equation 1) becomes {

y1,g = y2,g𝜃 + xgΓ + ug
y2,g = wgΠw + vg

for g = 1, … ,G, (3)

where y1,g and ug are ng × 1 vectors, y2,g and vg are ng × p matrices, wg =
[
zg∶ xg

]
is a ng × kw matrix of instruments, zg

and xg are ng × kz and ng × kx matrices of excluded and included instruments with kw = kz + kx, and Πw =
[
Π′

zΠ′
x
]′ is a

kw × p matrix of first-stage, reduced-form parameters. The errors
(
ug, vg

)
are independent across clusters with variance

E
[(

ug, vec
(
vg
)) (

ug, vec
(
vg
))′] = Σg. Equations 3 have the following matrix representation:{

y1 = y2𝜃 + XΓ + u
y2 = WΠw + V,

(4)

where y1 is an n × 1 vector, y2 is an n × p matrix of endogenous explanatory variables, W = [Z:X] is an n × kw matrix of
instruments, and Z and X are n × kz and n × kx matrices of excluded and included instruments, respectively. The Wald
test is defined as

W (𝜃0) =
(
�̂�IV − 𝜃0

)′(v̂ar(�̂� IV)
)−1 (

�̂�IV − 𝜃0
)
, (5)

where �̂�IV =
(
y′

2PMXZy2
)−1y′

2PMXZy1 is the IV estimator and v̂ar(�̂�IV), the cluster-robust estimator of var(�̂�IV), is

v̂ar
(
�̂�IV

)
=
(
y′

2PMXZy2
)−1

[ G∑
g=1

(
PMXZy2

)′
g Σ̂g(�̂� IV)

(
PMXZy2

)
g

](
y′

2PMXZy2
)−1

, (6)

where (PMXZy2)g is the ng × p submatrix PMXZy2 associated with the gth cluster.

4.1 Tests robust to the presence of weak instruments
The AR, KLM, and CLR tests were originally developed under the assumption that the distribution of the errors is i.i.d.,
but they have been adapted to allow for arbitrary heteroskedasticity or cluster dependence of the residuals (Chernozhukov
& Hansen, 2008; Finlay & Magnusson, 2009). We start by redefining equations in System 4 as{

Y (𝜃0) = W𝛿w (𝜃0) + e (𝜃0)
y2 = WΠw + V, (7)

8The definitions of the cluster-robust versions of the KLM and CLR tests together with the their bootstrap counterparts can be found in Section S.2 of
the Supporting Information Supplement.
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where Y (𝜃0) = y1−y2𝜃0, e (𝜃0) = u+Vd (𝜃0), 𝛿w (𝜃0) =
[
𝛿z(𝜃0)′ , 𝛿x(𝜃0)′

]′ = Πwd (𝜃0) +HΓ,Πw =
[
Π′

z ,Π′
x
]′, d (𝜃0) = (𝜃 − 𝜃0),

and H= [0,Ikx ]
′. The first of the equation in System 7 can be further rewritten as

𝛿w (𝜃0) = 𝛿w (𝜃0) Πwd (𝜃0) + HΓ
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

+
(
W′W

)−1W′e (𝜃0) (8)

where 𝛿w (𝜃0) = [𝛿z(𝜃0)′ , 𝛿x(𝜃0)′]′ =
(
W′W

)−1W′Y (𝜃0) is the OLS estimator of the reduced-form parameter 𝛿w (𝜃0). The
kw × kw “sandwich” matrix that corresponds to the cluster-robust estimator of the variance of 𝛿w (𝜃0) is

Ω̂ (𝜃0) =
(
W′W

)−1Ξ̂ee (𝜃0)
(
W′W

)−1
, (9)

where Ξ̂ee (𝜃0) is the estimator of the kw × kw variance matrix of W′e (𝜃0).9

Definition 1. (AR test with clustered residuals). The AR statistic for testing the null hypothesis H0 ∶ d (𝜃0) = 0 is:

ΛAR (𝜃0) ≡ 𝛿z(𝜃0)′
[
Ω̂𝛿z𝛿z (𝜃0)

]−1
𝛿z (𝜃0)

d
−−→𝜒2 (kz) ,

where Ω̂𝛿z𝛿z (𝜃0) is the submatrix of Ω̂ (𝜃0) associated with the variance and covariance estimator of 𝛿z (𝜃0). The symbol
d
−−→ represents convergence in distribution as G → +∞, and 𝜒2(s) is the chi-squared distribution with s degrees of
freedom.

The AR test has the correct asymptotic size even when the structural parameter 𝜃 is not identified. In that case, the AR
test will not have power, indicating the presence of weak instruments. On the other hand, the AR test is consistent when
Πz ≫ 0.10 The number of excluded instruments, kz, corresponds to the degrees of freedom of the AR test distribution,
which can be larger than p, the number of tested parameters. The larger the difference kz−p, the less powerful the AR test.
The AR test also has a Lagrange multiplier interpretation—see Section S.3 in the Supporting Information Supplement.

5 BOOTSTRAP METHODS FOR THE CLUSTER-SAMPLE IV MODEL

In many microeconometric applications, data have intra-cluster dependence in which the number of clusters is small, and
the asymptotic results are consequently poor approximations of the true distributions of the test statistics. For example,
many studies in labor economics use research designs that rely on policy changes at the state level, in which the number of
clusters is at most 51 in the USA and eight in Australia. Our simulations show that asymptotic tests that use cluster-robust
variance estimators may overreject with as many as 80 clusters. Therefore, bootstrapping them accordingly can improve
their size performance when the number of clusters is small.

We next present two classes of bootstrap methods for the AR test in a linear IV cluster model represented by the system
of equations 3: the estimating equations and the residual bootstraps.

5.1 Estimating equations (score) bootstrap
We begin the exposition by rewriting Equation 8 as

𝛿w (𝜃0) = 𝛿w (𝜃0) +
(
W′W

)−1
G∑

g=1
hg (𝜃0)w′

geg (𝜃0)
⏟⏞⏞⏟⏞⏞⏟

.

A simple idea about bootstrapping the distributions of 𝛿w (𝜃0) is based on perturbing the empirical distribution of the
scores

{
hg (𝜃0)

}G
g=1, but keeping the Hessian

(
W′W

)−1 fixed. Hu and Zidek (1995) call this type of bootstrap the estimating
equations (EE) bootstrap.11

Under H0∶ d (𝜃0) = 0, a candidate bootstrap estimator for 𝛿w (𝜃0) is

𝛿∗w (𝜃0) = 𝛿w (𝜃0) +
(
W′W

)−1
G∑

g=1
h̃∗

g (𝜃0) , (10)

9Details of the computation of Ξ̂ (𝜃0) are in Section S.4 of the Supporting Information Supplement.
10A test is consistent if it rejects H0 ∶ d (𝜃0) = 0 when H1 ∶ d (𝜃0) ≠ 0 is true and the sample size increases.
11See also Hu and Kalbfleisch (2000) and Kline and Santos (2012).
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where 𝛿w (𝜃0) = (0, 𝛿x (𝜃0)) and 𝛿x (𝜃0) = 𝛿x (𝜃0) − Ω̂𝛿x𝛿z (𝜃0)
[
Ω̂𝛿z𝛿z

]−1
𝛿z (𝜃0). 𝛿w (𝜃0) is a minimum distance estimator of

𝛿w (𝜃0)—see Section S.3 in the Supporting Information Supplement. The sequence of bootstrap scores
{

h̃∗
g (𝜃0)

}G
g=1 is

sampled with replacement from the recentered scores {h̃r
g (𝜃0)}G

g=1, defined as

h̃r
g (𝜃0) = h̃g (𝜃0) −

ng

n

G∑
𝑗=1

h̃𝑗 (𝜃0) ,

where h̃g (𝜃0) = w′
gẽg (𝜃0) and ẽg (𝜃0) = Yg (𝜃0) − wg𝛿w (𝜃0).12

The estimator of the variance of 𝛿∗w (𝜃0), denoted by Ω̃∗
𝛿w𝛿w

(𝜃0), is a function of
{

h̃∗
g (𝜃0)

}G
g=1 and does not depend on

𝛿∗w (𝜃0) itself. This property implies a computational gain of the EE bootstrap over the residual-type bootstraps discussed
below.

The general algorithm for computing the bootstrap AR test is as follows:

1. Compute ΛAR (𝜃0).
2. For b = 1, … ,B bootstrap simulations:

(a) Sample
{
𝜔g

}G
g=1, a sequence of bootstrap weights defined using Definition 2 below, and set the bootstrap score

realizations as {
h̃∗

1 (𝜃0) , … , h̃∗
G (𝜃0)

}
=
{
𝜔1h̃r

1 (𝜃0) , … , 𝜔Gh̃r
G (𝜃0)

}
.

(b) Compute 𝛿∗w (𝜃0) given by Equation 10 and its associated variance Ω̃∗
𝛿w𝛿w

(𝜃0).
(c) The bth bootstrap test is

Λ̃∗
AR,b (𝜃0) = 𝛿∗z (𝜃0)′

[
Ω̃∗
𝛿z𝛿z

(𝜃0)
]−1

𝛿∗z (𝜃0) , (11)

where Ω̃∗
𝛿z𝛿z

(𝜃0) is the block variance of Ω̃∗
𝛿w𝛿w

(𝜃0) associated with 𝛿∗z (𝜃0).

3. The bootstrap p-value for the AR test is

p̃∗-value = 1
B

B∑
b=1

I
(
Λ̃∗

AR,b (𝜃0) > ΛAR (𝜃0)
)
,

where I(·) is the indicator function. Reject the null hypothesis if the p̃∗-value is smaller than the desired significance
level of the test.

Next, we discuss two types of estimating equation bootstraps.

Definition 2. (Estimating equation (EE) bootstrap). Let
{
𝜔g

}G
g=1 be a sequence of bootstrap weights. The AR EE boot-

strap test is computed from the bootstrap score sequence
{

h̃∗
g (𝜃0)

}G

g=1
= {𝜔gh̃r

g (𝜃0)}G
g=1. We consider two bootstrap

weights:

1.
{
𝜔g

}G
g=1 are sampled from a multinomial distribution, so that

Pr
(

h̃∗
g (𝜃0) = h̃𝑗 (𝜃0)

)
= 1

G
, 𝑗 = 1, … ,G.

2.
{
𝜔g

}G
g=1 is an i.i.d. sequence sampled from a distribution satisfying E

[
𝜔g

]
= 0 and var

(
𝜔g

)
= 1. We discuss the

specific distributions for
{
𝜔g

}G
g=1 below.

The EE bootstrap with multinomial weights is closely related to bootstrap algorithm 1 of Kleibergen (2011) for gener-
alized method of moments (GMM) models. The second bootstrap is similar to the wild score bootstrap method proposed
by Kline and Santos (2012). These authors assume, however, that the tested parameter is identified and consistently
estimated, which allows them to use two-step GMM estimates on the empirical score. Clearly, the GMM estimator is
inconsistent when the instruments are weak.

12If the number of observations per cluster is the same, then ng

n
= 1

G
.
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Remark 1. Sampling the score from
{
𝜔gh̃r

g (𝜃0)
}G

g=1
corresponds to sampling the residuals from

{
�̄�gẽg (𝜃0)

}G
g=1, where

�̄�g = 𝜔g − �̄� and �̄� =
(∑G

g=1
𝜔gng

n

)
. We can interpret

{
�̄�g

}G
g=1 as the sequence of adjusted bootstrap weights.

Remark 2. The estimator �́�w (𝜃0) = (0, �́�x (𝜃0)), where �́�x (𝜃0) =
(
X′X

)−1X′Y (𝜃0), could replace 𝛿w (𝜃0) in Equation 10.
The bootstrap scores would be generated as before, and recentering is unnecessary if a constant is included in xg. If
the OLS estimate of 𝛿w (𝜃0) replaces 𝛿w (𝜃0) in the bootstrap, then 𝛿∗z (𝜃0) in Equation 11 should be substituted with
𝛿∗z (𝜃0) − 𝛿z (𝜃0) because 𝛿z (𝜃0) is the mean of the distribution of the bootstrap estimator 𝛿∗z (𝜃0).

5.2 Residual bootstraps
We can also resample the estimated residuals to generate bootstrap samples for obtaining bootstrap test statistics. We
consider two types of residual bootstraps. The first version estimates the bootstrap DGP by resampling the residuals of
the second-stage regression in Equation 7. In the second version, we simultaneously resample residuals from both the
first- and second-stage regressions for estimating the bootstrap DGP. We refer to the first and second bootstrap methods
as single-equation (SE) and multi-equation (ME) residual bootstraps. The bootstrap test statistics are computed in the
same way as the asymptotic ones, replacing the original sample with the bootstrapped one.

The AR-SE and AR-ME bootstrap tests are equal because the AR test does not depend on the first-stage regression
residuals. Since we focus on the AR test, we present only the single-equation residual bootstrap. In Section S.5 of the
Supporting Information Supplement, we describe multi-equation residual bootstrap methods for the KLM, CLR, and Wald
tests, and a variant of Davidson and MacKinnon (2010) bootstrap residual procedure for the AR and KLM tests adapted
to the cluster case.
Single-equation residual bootstrap

Let
{

ég (𝜃0)
}G

g=1 be a sequence of residuals, where ég (𝜃0) = Yg (𝜃0)−wg�́�w (𝜃0) is the ng ×1 vector associated with the gth

cluster and �́�w (𝜃0) is defined in Remark 2. Then, the bootstrap realization of Y (𝜃0) is given by 'Y∗ (𝜃0) = W�́�w (𝜃0)+ é∗ (𝜃0),
where é∗ (𝜃0) = (é∗1(𝜃0)′, … , é∗G(𝜃0)′)′,

{
é∗g (𝜃0)

}G
g=1 =

{
𝜔gég (𝜃0)

}G
g=1, and the bootstrap estimates of 𝛿w (𝜃0) are

�́�∗w (𝜃0) =
[
�́�∗z (𝜃0)′ �́�∗x (𝜃0)′

]′ = (
W′W

)−1W′ 'Y∗ (𝜃0) .

The steps for implementing the AR residual bootstrap test are similar to those for the AR EE bootstrap test. In step 2a,
we use a sequence of

{
é∗

g (𝜃0)
}G

g=1 =
{
𝜔gég (𝜃0)

}G
g=1. In steps 2a and 2b, we compute �́�∗w (𝜃0) and Ώ∗

𝛿∗z 𝛿
∗
z
(𝜃0), where Ώ∗

𝛿∗z 𝛿
∗
z
(𝜃0)

is an estimator of the variance matrix �́�∗z (𝜃0).13 This result differs from the EE bootstrap in that Ώ∗
𝛿∗z 𝛿

∗
z
(𝜃0) is a function of

�́�∗z (𝜃0). The bth bootstrap Λ́∗
AR,b (𝜃0) is obtained by replacing 𝛿∗z (𝜃0) and Ω̃∗

𝛿z𝛿z
(𝜃0) with �́�∗w (𝜃0), Ώ∗

𝛿∗z 𝛿
∗
z
(𝜃0) in the respective

formulas of Step 2c.

Definition 3. (Single-equation residual (SE) bootstrap). Let
{
𝜔g

}G
g=1 be a sequence of bootstrap weights satisfying

E
[
𝜔g

]
= 0 and var

(
𝜔g

)
= 1. The bootstrap DGP is

1. Inefficient SE (SE-in):
{ 'Y∗

g (𝜃0)
}G

g=1 =
{

wg�́�w (𝜃0) + é∗g (𝜃0)
}G

g=1, where
{

é∗g (𝜃0)
}G

g=1 =
{
𝜔gég (𝜃0)

}G
g=1, and

2. Efficient SE (SE-eff):
{

Ỹ∗
g (𝜃0)

}G
g=1 =

{
wg𝛿w (𝜃0) + ẽ∗

g (𝜃0)
}G

g=1, where
{

ẽ∗
g (𝜃0)

}G
g=1 =

{
𝜔gẽg (𝜃0)

}G
g=1.

Remark 3. If a constant is not included in xg, then the fitted residuals
{

ég (𝜃0)
}G

g=1 should be recentered.

Remark 4. As in Remark 2, we could use
{

ê∗
g (𝜃0)

}G
g=1 =

{
𝜔gêg (𝜃0)

}G
g=1, where êg = Yg (𝜃0) − wg𝛿w (𝜃0), to generate

bootstrap realizations of Y (𝜃0). Then, 𝛿∗z (𝜃0) − 𝛿z (𝜃0) should be in place of �́�∗z (𝜃0) when computing the bootstrap
realizations of the AR test, where 𝛿∗z (𝜃0) is the bootstrap estimator of 𝛿z (𝜃0). In this case, the only difference between
the EE and SE bootstraps is the bootstrap estimator of the variance. For the EE bootstrap, we use

{
ê∗

g (𝜃0)
}G

g=1, whereas
for the SE bootstrap, we use {ê∗

b,g (𝜃0)}G
g=1, where ê∗

b,g (𝜃0) = Ŷ∗
g (𝜃0) − wg𝛿∗w (𝜃0).

13See Section S.4 in the Supporting Information Supplement for the definition of the variance estimator.
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5.3 Resampling weights
Apart from the EE bootstrap with multinomial weights, the remaining weights used for the proposed bootstraps satisfy
E[𝜔g] = 0 and E[𝜔2

g] = 1. This condition ensures that the distributions of the resampled scores or residuals have the same
first and second moments of their underlying empirical distributions. Matching higher moments of the bootstrap and
empirical distributions yields the asymptotic refinement. Many weights satisfy this property for the wild bootstrap. Liu
(1988) proposes weights defined as 𝜔g = 𝜁 g − E(𝜁 g), where 𝜁 g is a gamma random variable with shape parameter 4 and
scale parameter 1

2
. The gamma (Γ) weights also satisfy E[𝜔3

g] = 1 and, therefore, match the first three moments. Davidson
and MacKinnon (2010) suggest sampling the weights from the Rademacher distribution, which is defined as

𝜔g =
{

1 with probability 1/2
−1 with probability 1/2.

The Rademacher (R) weights match the first four moments if the underlying distribution is symmetric.
There are other bootstrap weights based on continuous and discrete distributions, such as Liu's weights (𝜔g = wgzg −

E(wg)E(zg), where wg and zg are independent normal random variables with mean 1
2
(
√

17∕6+
√

1∕6) and variance 1
2
), and

Mammen (1993) weights (𝜔g = (1−
√

5)∕2 with probability 1+
√

5
2
√

5
and 𝜔g = (1+

√
5)∕2 with probability

√
5−1

2
√

5
). Our Monte

Carlo experiments show that Liu's and Mammen's weights are outperformed by the gamma and Rademacher weights, so
we only report the results using gamma and Rademacher weights.14

6 MONTE CARLO SIMULATIONS

We now evaluate the small-sample properties of the asymptotic and proposed cluster bootstrap tests through Monte Carlo
simulations.

6.1 Simulation design
The baseline model has the same structure as System 3, which is repeated for convenience:{

y1,g = y2,g𝜃 + xgΓ + ug

y2,g = zgΠz + xgΠx + vg
for g = 1, … ,G.

We assume that 𝜃 is scalar; xg = 𝜾g, where 𝜾g is a ng × 1 vector of ones; and Γ = Πx = 1. The instrument zg is set as
zg = 𝜄ng d′

g +𝝑g, where dg is a kz × 1 vector and 𝝑g is an ng × kz matrix and where dg and 𝝑g are sampled from independent

multivariate distributions and adjusted such that
∑G

g=1 ng

(
dg − d

)′ (
dg − d

)
= (1 − 𝜆)nIkz , where d = 1

G

∑G
g=1 dg and∑G

g=1 𝝑
′
ng𝝑ng = 𝜆nIkz , with 𝛊′g𝝑g = 0. These adjustments allow us to have n−1Z′MXZ = Ikz , where n is the total number of

observations. The scalar 𝜆 satisfies 0 ≤ 𝜆 ≤ 1. If 𝜆 = 0, then the instruments are the same within groups. We keep the
instruments W= [Z:X] fixed in all simulations.

Carter, Schnepel, and Steigerwald (2017) and MacKinnon and Webb (2017) show that variation in the number of obser-
vations across clusters does affect hypothesis testing in the linear regression with only exogenous controls. Therefore, for
a fixed sample size n, we follow MacKinnon and Webb and set the number of observations in cluster g according to

ng = nint
⎛⎜⎜⎜⎝n

exp
(
𝜂

g
G

)
∑G

g=1 exp
(
𝜂

g
G

)⎞⎟⎟⎟⎠ , for g = 1, … ,G − 1, and nG = n −
G−1∑
g=1

ng,

where nint(·) is the nearest integer function. When 𝜂 = 0, each cluster has the same number of observations. As 𝜂
increases, the differences across the ngs are larger.

We generate the model errors as{
ug = uc

g + ui
g

vg = 𝜌uc
g + 𝜚ui

g +
(
1 − 𝜌2) 1

2 vc
g +

(
1 − 𝜚2) 1

2 vi
g

for = 1, … ,G,

14The results are available upon request.
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where
(
uc

g, vc
g
)
=

√
𝜙
(
𝜀1,g, 𝜀2,g

)
⊗ 𝛊g,

(
ui

g, vi
g
)
=

√
1 − 𝜙(𝛙1,g ⊙ 𝑓

(
z1,g, 𝜅

)
,𝛙2,g), 𝛜g =

(
𝜀1,g, 𝜀2,g

)
∼ i.i.d. (0, I2), 𝛙g =

(𝛙′
1,g,𝛙

′
2,g)

′ ∼ i.i.d. (0,I2ng ), and 𝜺gand 𝝍 g are independent. The operator ⊙ is the Hadamard product, and 𝑓
(
z1,g, 𝜅

)
is the

skedastic function, which is defined as
𝑓
(
z1,g, 𝜅

)
= h(𝜅)

(
𝛊g + 2z1,g

)𝜅
, (12)

where the vector z1,g corresponds to the first column of the matrix zg. The function h(𝜅) is a scaling factor that ensures
that the average variance of ui is equal to 1 − 𝜙. Therefore, changing 𝜅 captures changes in the heterogeneity present
in the errors without affecting the variance of these errors on average. When 𝜅 = 0, the residuals are akin to the cluster
random-effects model. The scalar 𝜙, which satisfies 0 ≤ 𝜙 ≤ 1, has two roles. First, it captures the correlation of
disturbances within the same cluster. Second, it controls the share of the variance of ug due to idiosyncratic (ui

g) and
cluster (uc

g) components. The scalars 𝜌 and 𝜚 capture the intra-cluster and the idiosyncratic correlations, respectively.
The identification of the structural parameter 𝜃 is related to the rank of Πz. We set Πz based on the noncentrality

parameter of the cluster-robust first-stage F-statistic for testing H0 ∶ Πz = 0, which is

𝜇kz = n
Π′

z
[
var∞

(
Π̂z

)]−1Πz

kz
,

where var∞(Π̂z) = limn→+∞
1
n

E
[
Z′MXVV′MXZ

]
. If residuals are independent across individuals and homoskedastic, then

𝜇kz becomes the “concentration parameter” divided by the number of excluded instruments. The inverse of the noncen-
trality parameter 𝜇kz also appears in the formula of the bias of the IV estimator derived from a Nagar type of expansion
(see Equation 15 below and Sections S.6 and S.7 in the Supporting Information Supplement). We assume that only the
first instrument is relevant, so that Πz = (cz, 0, … , 0)′. Therefore, the noncentrality parameter simplifies to

𝜇kz = n
c2

z

kz

[
var∞

(
Π̂z

)]−1
11 , (13)

where
[
var∞(Π̂z)

]−1
11 indicates the first diagonal entry of

[
var∞(Π̂z)

]−1, and we fix the value of cz as

cz =

√√√√ kz[
var ∞

(
Π̂z

)]−1
11

𝜇kz

n
.

We replace var∞(Π̂z) in Equation 13 with 1
n

Z′MXΨMXZ, where Ψ = diag(
{
Ψg

}G
g=1), with Ψg = 𝜙 𝛊g𝛊′g +

(1 − 𝜙)
[
diag(

{
𝑓
(
z1,g, 𝜅

)}G
g=1)

]◦2
, and A◦2 is the Hadamard power of matrix A.

When 𝜅 = 0 and 𝜂 = 0, or cluster random effects with the same number of observations per cluster, Nagar's (1959)
approximation for the bias of the IV estimator is

E
[
�̂�IV − 𝜃

|||W
]
≈ (kz − 2)

(
nc2

z
)−1 (𝜙n̄ (1 − 𝜆) 𝜌 + (1 − 𝜙) 𝜚) ,15 (14)

where n̄ = n∕G. Equation 14 makes explicit that the within-cluster correlation 𝜌 counts toward the bias of the IV estimator
n̄ times more than the correlation of the idiosyncratic term 𝜚 does. By setting 𝜌 = 𝜚, the approximate bias of the IV
estimator can be rewritten as

E
[
�̂�IV − 𝜃

|||W
]
≈
(
𝜇kz

)−1
[
(kz − 2)

kz
𝜌

]
. (15)

This result is similar to the bias for �̂�IV derived in Bun and de Haan (2010) and Olea and Pflueger (2013).

6.2 Simulation results
Our results are based on 10,000 Monte Carlo experiments with 199 and 999 bootstrap replications for size and power
results, respectively. In repeated Monte Carlo experiments, a small number of bootstrap simulations is sufficient because
the bootstrap sampling error cancels out across the Monte Carlo replications. In practice, however, a higher number of
bootstrap replications should be used (Davidson & MacKinnon, 2000). We set a 5% significance level for calculating the

15See the derivation in Section S.6 of the Supporting Information Supplement.
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rejection rates; set 𝜆 = 0.01, which gives small variation on the instruments; and set 𝜙 = 0.5, which indicates a design
with considerable intra-cluster correlation.16

We choose 𝜅, the parameter that sets the degree of variance-preserving heterogeneity in the errors, from the set {0, 1, 2},
which indicate no heterogeneity (cluster random effects), heterogeneity, and strong heterogeneity. The number of obser-
vations in each cluster is controlled by 𝜂, which is selected from {0, 1, 2}. For example, when 400 observations (n = 400)
are allocated into 20 clusters (G = 20), 𝜂 = 0 means 20 observations per cluster, 𝜂 = 1 means the observations per cluster
vary in the range of 12–33, and 𝜂 = 2 means that this range becomes 6–47. We investigate cases with 𝜌 = 𝜚 = 0.20, 0.70,
and 0.95, which signify a low to high degree of endogeneity.

We study cases where the noncentrality parameter 𝜇kz takes values of 0.1 and 18, indicating very weak and strong
instruments, respectively. In our baseline model (𝜅 = 0 and 𝜂 = 0) and using Gaussian approximations, the ratio[ (kz−2)

kz
𝜌
]
× (BM)−1 is asymptotically bounded by one, where BM is the benchmark indicating the worst case of IV esti-

mator bias (see Olea & Pflueger, 2013, theorem 1). This property implies that the fraction of the IV bias relative to the
benchmark is approximately 5.5% at 𝜇kz = 18, which is below the 10% tolerance level for setting the 5% critical value of the
effective F-test. In our experiments, the rejection rates of the effective F-tests remain above 95% even for the cases where
𝜅 ≠ 0 and 𝜂 ≠ 0, with the estimated IV bias below 7% in all cases and below 4% in the overwhelming majority of cases.

Owing to space constraints, we are only reporting a fraction of the Monte Carlo experiments. Further results in Section
S.8 of the Supporting Information Supplement include different combinations of 𝜇kz and 𝜌 for the Wald, KLM, and CLR
tests and their bootstrap counterparts. We also report results there for the EE bootstrap test with multinomial weights,
the classical Wald pairs bootstrap, and Davidson and MacKinnon's bootstraps adapted to the cluster case.17

6.2.1 Size results
We set 𝜃 = 0 as the true value under the DGP. Similar to Hausman and Palmer (2012) and MacKinnon (2013), the
instruments

{
zg
}G

g=1 are obtained from
{

dg
}G

g=1 and
{
𝝑g
}G

g=1 sampled from independent log-normal distributions because
doing so generates some extreme observations. These extreme values increase with the sample size, making inference
under the cluster-robust set-up very difficult. We report the rejection rates for the asymptotic Wald and AR tests together
with the Wald multi-equation efficient (ME-eff) bootstrap, the AR estimation equation (EE), and the single-equation
inefficient (SE-in) and efficient (SE-eff) bootstraps. We also include the rejection rates for the effective F-test with the
desired threshold of 10%.18

We first investigate the performance of the asymptotic and bootstrap tests assuming different DGPs for the errors 𝜺g and
𝝍 g, and noncentrality parameter set at 𝜇kz = 18. In Table 3, panels A, B, and C refer to errors sampled from a standard
normal distribution, a chi-squared distribution with two degrees of freedom, and a Student t-distribution with four degrees
of freedom. The errors sampled from the chi-squared and Student t-distributions are standardized to have zero mean
and unit variance, guaranteeing that the overall variance is the same across panels. The sample size is 400 observations
allocated in 20 clusters (G = 20), and the number of excluded instruments kz is 5.

The rejection rates of the asymptotic Wald test differ considerably from the nominal level of 5% in all panels, and this
difference is increasing with respect to the degree of residual heterogeneity (𝜅). The asymptotic AR test is also oversized,
with rejection rates varying along with the heterogeneity in the number of observations across clusters (𝜂). Interestingly,
when comparing both asymptotic tests, the AR size distortion is lower when 𝜂 = 0 and 𝜂 = 1, but the Wald test outperforms
the AR test under normal and t errors when 𝜂 = 2.

The proposed Wald ME-eff and AR bootstrap tests have rejection rates near the nominal level in all scenarios, with the
AR bootstrap test closer to 5% than the Wald ME-eff test in the majority of the experiments. For the AR bootstrap methods,
the EE bootstrap rejection rates are smaller than the SE bootstrap rejection rates across panels, 𝜅, and 𝜂.

In general, for a given bootstrap procedure, the Rademacher (R) weights deliver better results than the gamma weights
when the errors are sampled from standard normal and Student t-distributions for a given bootstrap procedure, as
expected. Interestingly, however, when the errors are sampled from the standardized chi-squared distribution, which
is clearly not symmetric, gamma weights do not necessarily outperform Rademacher (R) weights. Additionally, under

16Simulations for different values of 𝜆 and 𝜙 < 0.7 give similar results. For values of 𝜙 > 0.7, the effect of heteroskedasticity becomes smaller because
the share of error variance due to the idiosyncratic error 𝛙1,g ⊙ 𝑓

(
z1,g, 𝜅

)
decreases.

17Wald bootstrap tests not reported in this manuscript overreject the true null assumption in almost all cases and have inferior performance in terms of
size when compared to the Wald ME-eff bootstrap.
18The conservative version of the effective F-test gives rejection rates slightly smaller than those of the standard one. The results are in the Supporting
Information Supplement together with the first-stage F-test.
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TABLE 3 Test rejection percentages for testing H0 ∶ 𝜃 = 0 against H1 ∶ 𝜃 ≠ 0 at the 5% significance level, DGPs with different
distributions of random errors, 10,000 Monte Carlo simulations

𝜿 → 𝜼 = 0 𝜼 = 1 𝜼 = 2
Stat. Method 𝝎g 0 1 2 0 1 2 0 1 2

Panel A:errors
Wald Asymp. 33.70 41.88 45.73 24.17 25.38 29.34 24.66 25.72 26.21

ME-eff Γ 0.52 0.77 1.19 5.81 6.22 6.75 8.84 9.19 9.15
R 1.42 2.06 2.40 5.02 5.23 5.55 5.82 5.86 5.99

AR Asymp. 17.08 16.99 16.95 19.01 19.57 19.54 27.07 26.58 27.05
EE Γ 6.30 6.23 6.17 6.55 6.57 6.06 7.59 7.16 7.23

R 4.46 4.48 4.43 4.32 4.38 4.46 4.20 4.38 4.65
SE-in Γ 6.89 6.90 6.82 7.12 7.21 6.66 7.70 7.24 7.41

R 5.39 5.28 5.24 5.58 5.59 5.17 5.51 5.40 5.42
SE-eff Γ 6.58 6.92 6.77 6.87 7.19 6.65 7.82 7.66 7.71

R 5.07 5.00 5.00 5.18 5.14 4.89 5.51 5.20 5.36
Feff 96.57 99.72 99.94 98.95 99.46 99.82 97.82 98.87 98.96

Panel B: 𝜒2errors
Wald Asymp. 34.75 41.71 50.10 22.69 24.09 29.12 21.48 24.24 24.78

ME-eff Γ 0.08 0.51 0.60 2.69 3.65 4.43 5.97 7.09 7.17
R 0.53 1.24 1.46 2.45 2.75 3.04 5.07 6.48 6.50

AR Asymp. 13.33 13.75 13.41 15.93 15.80 15.97 21.85 23.29 23.66
EE Γ 4.75 5.24 4.68 5.15 5.44 5.54 5.74 6.44 6.40

R 3.52 4.34 3.75 3.96 4.08 4.27 3.81 4.43 4.38
SE-in Γ 5.00 5.48 5.06 5.48 5.64 5.85 5.84 6.26 6.22

R 3.87 4.44 3.89 4.31 4.37 4.66 4.45 4.82 4.70
SE-eff Γ 5.38 5.72 5.34 5.83 5.75 6.01 6.28 7.03 6.75

R 3.98 4.41 4.08 4.48 4.44 4.60 4.69 5.12 5.16
Feff 92.38 97.71 98.84 96.36 97.47 98.68 94.06 95.99 96.24

Panel C: terrors
Wald Asymp. 31.12 41.02 46.54 22.19 24.81 29.27 22.15 24.36 24.84

ME-eff Γ 0.72 1.12 1.64 5.04 5.51 5.95 7.18 7.87 7.83
R 2.06 2.27 2.97 5.00 4.74 5.32 4.84 5.75 5.77

AR Asymp. 15.56 15.89 15.22 17.94 17.80 17.64 25.14 26.11 25.99
EE Γ 5.51 5.54 5.46 5.75 5.73 5.52 6.68 6.56 6.44

R 4.02 4.16 4.06 4.14 4.14 4.22 4.29 3.98 4.37
SE-in Γ 6.57 6.60 6.29 6.84 6.78 6.59 7.17 7.04 7.23

R 4.99 5.20 5.04 5.38 5.46 5.34 5.55 5.62 5.82
SE-eff Γ 6.63 6.45 6.42 6.79 6.64 6.58 7.50 7.35 7.44

R 4.67 4.72 4.63 5.10 5.00 4.86 5.21 5.33 5.45
Feff 93.43 97.69 98.61 96.52 97.51 98.51 95.54 96.87 96.99

Note. Authors' calculations with 199 bootstrap replications for each simulation. ME-eff is the Wald efficient multi-equation residual bootstrap test (see
Supporting Information Supplement Section S.5.5). EE is the AR estimating equations bootstrap test; SE-eff (SE-in) is the AR efficient (inefficient)
single-equation residual bootstrap test (see Section 5.2). The sample size is 400 observations with 20 clusters: 𝜂 = 0 indicates 20 observations per clus-
ter, and 𝜂 = 1 and 𝜂 = 2 indicate observations per cluster in the range of 12–29 and 7–42, respectively. Number of excluded/included instruments:
kz = 5∕kx = 1. Within-cluster error correlation: 𝜙 = 0.5. Degree of endogeneity: 𝜌 = 0.95. Skedastic function: 𝑓

(
z1,g, 𝜅

)
= h(𝜅)

(
𝛊g + 2z1,g

)𝜅 . The weights
Γ and R correspond to the gamma and Rademacher weights, respectively. The effective F-test uses 5% critical values under a 10% tolerance for bias.

Rademacher weights, the AR SE-eff bootstrap rejection rates are closer to the nominal level than the remaining AR
bootstrap methods in almost all cases.

We next investigate the performance of the bootstrap tests when the number of exogenous instruments increases but
the sample size is kept constant. As shown in D. W. K. Andrews and Stock (2007), the AR test does not have the correct

asymptotic size if the magnitude of k
3
2

z

n
> 0 as n → +∞. In this experiment, the number of clusters G and the sample
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TABLE 4 Test rejection percentages for testing H0 ∶ 𝜃 = 0 against H1 ∶ 𝜃 ≠ 0 at the 5% significance level, DGPs with different numbers of
instruments (kz), 10,000 Monte Carlo simulations

𝜿 = 0 𝜿 = 1 𝜿 = 2
Stat. Method kz → 2 5 10 15 2 5 10 15 2 5 10 15

DGP𝜇kz
= 18

Wald Asymp. 16.16 33.70 24.18 29.50 17.94 41.88 24.24 32.80 21.34 45.73 24.47 36.68
ME-eff Γ 7.27 0.52 14.41 3.13 7.44 0.77 14.40 3.81 7.67 1.19 12.91 4.90

R 5.58 1.42 7.81 5.72 5.70 2.06 8.06 6.00 5.65 2.40 7.66 6.42
Feff 95.01 96.57 99.22 100.00 96.22 99.72 99.64 100.00 97.57 99.94 99.84 100.00

DGP𝜇kz
= 0.1

Wald Asymp. 69.20 93.67 99.54 99.95 69.93 92.68 99.26 99.89 69.76 91.84 99.29 99.89
ME-eff Γ 25.27 44.02 81.01 99.03 26.64 43.14 80.61 98.37 27.29 41.90 79.10 97.88

R 19.05 31.54 71.45 97.13 20.03 30.57 70.63 95.98 21.34 29.65 69.06 95.09
Feff 2.73 0.29 0.48 20.19 3.12 0.41 0.59 21.84 4.00 0.64 0.61 23.47

DGP𝜇kz
= 18, 0.1

AR Asymp. 6.86 17.08 60.93 96.98 6.59 16.99 61.03 97.03 6.19 16.95 60.44 96.99
EE Γ 5.79 6.30 7.37 5.99 5.29 6.23 7.21 6.44 5.15 6.17 7.83 5.86

R 4.70 4.46 4.30 2.64 4.70 4.48 4.25 2.87 4.70 4.43 4.47 2.53
SE-in Γ 5.92 6.89 8.52 7.30 5.81 6.90 8.30 7.64 5.60 6.82 8.66 6.85

R 5.39 5.39 5.37 5.85 5.30 5.28 5.27 6.00 5.26 5.24 5.47 5.51
SE-eff Γ 5.96 6.58 8.78 7.39 5.69 6.92 8.64 7.86 5.64 6.77 8.95 7.09

R 5.38 5.07 5.02 5.69 5.21 5.00 4.91 5.66 5.04 5.00 5.07 5.36

Note. Authors' calculations with 199 bootstrap replications for each simulation. ME-eff is the Wald efficient multi-equation residual bootstrap test (see Supporting
Information Supplement Section S.5.5). EE is the AR estimating equations bootstrap test; SE-eff (SE-in) is the AR efficient (inefficient) single-equation residual
bootstrap test (see Section 5.2). The sample size is 400 observations with 20 clusters, 20 observations per cluster. Number of included instruments: kx = 1.
Within-cluster error correlation: 𝜙 = 0.5. Degree of endogeneity: 𝜌 = 0.95. Skedastic function: 𝑓

(
z1,g, 𝜅

)
= h(𝜅)

(
𝛊g + 2z1,g

)𝜅 . The weights Γ and R correspond to
the gamma and Rademacher weights, respectively. The effective F-test uses 5% critical values under a 10% tolerance for bias.

size n are again set at 20 and 400, respectively, assuming the same number of observations across clusters (𝜂 = 0). We
consider DGPs with noncentrality parameter set at 𝜇kz = 18 and 0.1, and standard normal errors. The results are reported
in Table 4. The columns vary with the 𝜅 parameter, which is the degree of variance-preserving heterogeneity in the errors.
The number of instruments kz in the third row increases from 2 to 15. Because the AR test is invariant with respect to 𝜇kz ,
we only report it once at the bottom of the table.

The results show that the rejection rates of the asymptotic Wald and AR tests are well above the nominal size of 5%. In
particular, the asymptotic AR test increases along with the number of instruments, reaching values above 90% at kz = 15.
The AR bootstrap tests, on the other hand, have rejection rates closer to the nominal size in all scenarios, including the
scenarios with 15 instruments. There is no AR bootstrap test that outperforms the others in all cases. We note, however,
that, with Rademacher weights, the AR SE bootstrap tests have rejection rates closer to the nominal level than the AR EE
bootstrap test has.

Only when the instruments are strong (𝜇kz = 18) does the Wald ME-eff bootstrap test have rejection rates closer to
the nominal level when compared with the asymptotic statistic, but the AR bootstrap test rejection rates are closer still.
With weak instruments, the Wald ME-eff bootstrap is size distorted in all scenarios, with overrejection increasing with
the number of instruments.

We now explore the impact of endogeneity, which is set by 𝜌, the correlation between first- and second-stage residuals.
We use a sample design similar to the previous case with five instruments. The results are in Table 5.

The asymptotic Wald tests overreject the null hypothesis for all combinations of 𝜇kz and 𝜌. We note, however, that only
when 𝜇kz = 0.1 do the rejection rates of the Wald test increase with 𝜌 . This result is consistent with the weak IV literature
(see ; Davidson & MacKinnon, 2010; Kleibergen, 2002). The reason is that the Wald test depends on the IV estimator �̂�IV,
whose approximate bias is given by Equation 15. From this equation, we observe that the effect of 𝜌 on the bias is larger
when 𝜇kz is small, and the opposite when 𝜇kz is large.

The AR test rejection rates are repeated across columns for a given degree of heterogeneity 𝜅 because the AR test is
invariant with respect to 𝜌. Table 5 also shows that the AR bootstrap rejection rates are closer to the nominal size of the
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TABLE 5 Test rejection percentages for testing H0 ∶ 𝜃 = 0 against H1 ∶ 𝜃 ≠ 0 at the 5%
significance level, DGPs with different degrees of endogeneity (𝜌), 10,000 Monte Carlo simulations

𝜿 = 0 𝜿 = 1 𝜿 = 2
Stat. Method 𝝆→ 0.20 0.70 0.95 0.20 0.70 0.95 0.20 0.70 0.95

DGP𝜇kz
= 18

Wald Asymp. 33.89 33.85 33.70 42.93 42.46 41.88 47.83 46.60 45.73
ME-eff Γ 0.67 0.70 0.52 0.85 0.84 0.77 0.97 1.28 1.19

R 1.84 1.65 1.42 2.15 2.30 2.06 2.19 2.40 2.40
Feff 96.27 96.50 96.57 99.67 99.64 99.72 99.96 99.91 99.94

DGP𝜇kz
= 0.1

Wald Asymp. 12.90 58.29 93.67 14.48 60.26 92.68 16.04 60.04 91.84
ME-eff Γ 3.37 20.41 44.02 3.51 22.06 43.14 3.78 21.72 41.90

R 4.25 15.41 31.54 4.28 16.07 30.57 4.48 15.90 29.65
Feff 0.23 0.18 0.29 0.23 0.31 0.41 0.28 0.43 0.64

DGP𝜇kz
= 18, 0.1

AR Asymp. 17.08 17.08 17.08 16.99 16.99 16.99 16.95 16.95 16.95
EE Γ 6.15 6.15 6.15 6.25 6.25 6.25 6.12 6.12 6.12

R 4.32 4.32 4.32 4.14 4.14 4.14 4.25 4.25 4.25
SE-in Γ 6.89 6.89 6.89 6.90 6.90 6.90 6.82 6.82 6.82

R 5.39 5.39 5.39 5.28 5.28 5.28 5.24 5.24 5.24
SE-eff Γ 6.58 6.58 6.58 6.92 6.92 6.92 6.77 6.77 6.77

R 5.07 5.07 5.07 5.00 5.00 5.00 5.00 5.00 5.00

Note. Authors' calculations with 199 bootstrap replications for each simulation. ME-eff is the Wald efficient
multi-equation residual bootstrap test (see Supporting Information Supplement Section S.5.5). EE is the AR esti-
mating equations bootstrap test; SE-eff (SE-in) is the AR efficient (inefficient) single-equation residual bootstrap
test (see Section 5.2). The sample size is 400 observations with 20 clusters, 20 observations per cluster. Number of
excluded/included instruments: kz = 5∕kx = 1. Within-cluster error correlation: 𝜙 = 0.5. Degrees of endogene-
ity (𝜌): 0.20, 0.70, 0.95. Skedastic function: 𝑓

(
z1,g, 𝜅

)
= h(𝜅)

(
𝛊g + 2z1,g

)𝜅 . The weights Γ and R correspond to the
gamma and Rademacher weights, respectively. The effective F-test uses 5% critical values under a 10% tolerance
for bias.

tests as compared with the Wald ME-eff, and the AR SE-eff bootstrap with Rademacher weights outperforms the other
bootstraps.

In the final size experiment, we study the behavior of the tests when the number of clusters increases. Table 6 shows
the rejection rates of asymptotic and bootstrap tests when the number of clusters G increases from 10 to 80 (from 200 to
1600 observations, respectively). We again consider the case with normally distributed errors and five instruments. The
noncentrality parameter 𝜇kz is set at 18 and 0.1 and is kept constant across G. The panels vary in 𝜂, and the columns vary
in the degree of error heterogeneity 𝜅.

The rejections rates of both the asymptotic Wald with strong instruments and AR tests approach the nominal size as the
number of clusters G increases; however, the asymptotic Wald test still overrejects the null when the number of clusters
is G = 80. Nevertheless, in all panels and for all values of G, the proposed AR bootstraps have rejection rates close to the
nominal size irrespective of the degree of error heteroskedasticity 𝜅 and the number of clusters. Only when instruments
are strong does the Wald ME-eff bootstrap tests have rejection rates close to the nominal values, but they are not as close as
compared with the AR bootstrap rejection rates. In the case of weak instruments, the Wald and its bootstrap tests always
overreject the null.

The previous results show that the proposed AR bootstrap method performs remarkably well across all different spec-
ifications, with the Rademacher (R) weights outperforming the gamma weights (Γ) in terms of size in the majority of
cases.

6.2.2 Power comparison
Given that the proposed AR bootstrap methods have similar performance in terms of size, we now examine how they
vary in terms of power. As opposed to the previous subsection, the instruments for this analysis

{
zg
}G

g=1 are obtained from
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TABLE 6 Test rejection percentages for testing H0 ∶ 𝜃 = 0 against H1 ∶ 𝜃 ≠ 0 at the 5% significance level, DGPs with
different numbers of clusters (G), 10,000 Monte Carlo simulations

𝜿 = 0 𝜿 = 1 𝜿 = 2
Stat. Method G → 10 20 40 80 10 20 40 80 10 20 40 80

DGP𝜇kz
=18

Wald Asymp. 38.18 33.70 28.08 17.13 43.39 41.88 38.15 24.86 46.77 45.73 44.22 27.98
ME-eff Γ 0.21 0.52 1.54 9.09 0.27 0.77 2.87 9.75 0.37 1.19 4.09 10.14

R 1.52 1.42 2.10 6.11 1.73 2.06 2.91 6.41 2.01 2.40 3.50 6.64
Feff 98.83 96.57 94.48 94.22 99.49 99.72 99.88 99.62 99.86 99.94 99.98 99.54

DGP𝜇kz
=0.1

Wald Asymp. 94.84 93.67 93.25 92.82 94.59 92.68 91.10 91.80 93.80 91.84 89.78 91.12
ME-eff Γ 62.27 44.02 32.43 29.79 61.50 43.14 32.64 34.10 57.95 41.90 32.84 35.97

R 48.64 31.54 22.80 22.44 47.73 30.57 22.61 25.65 45.49 29.65 23.22 27.99
Feff 9.50 0.29 0.00 0.00 10.13 0.41 0.04 0.01 11.25 0.64 0.11 0.01

DGP𝜇kz
=18, 0.1

AR Asymp. 47.50 17.08 8.32 5.63 47.32 16.99 7.70 5.18 46.91 16.95 8.12 4.88
EE Γ 6.05 6.30 6.22 6.08 5.87 6.23 5.93 5.86 5.72 6.17 5.92 5.46

R 2.94 4.46 4.79 5.02 2.97 4.48 4.64 4.95 2.72 4.43 4.65 4.76
SE-in Γ 7.62 6.89 6.18 5.95 7.17 6.90 5.90 5.84 7.48 6.82 5.78 5.42

R 6.65 5.39 4.99 5.11 6.70 5.28 4.70 5.03 6.42 5.24 4.69 4.89
SE-eff Γ 7.41 6.58 6.18 5.91 6.81 6.92 6.00 5.89 7.09 6.77 5.89 5.47

R 5.40 5.07 4.93 5.17 5.22 5.00 4.67 5.20 5.11 5.00 4.68 4.85

Note. Authors' calculations with 199 bootstrap replications for each simulation. ME-eff is the Wald efficient multi-equation residual
bootstrap test (see Supporting Information Supplement Section S.5.5). EE is the AR estimating equations bootstrap test; SE-eff (SE-in)
is the AR efficient (inefficient) single-equation residual bootstrap test (see Section 5.2). Sample size, number of clusters: (n,G) =
(200, 10); (400, 20); (800, 40); (1600, 80). 20 observations per cluster. Number of excluded/included instruments: kz = 5∕kx = 1. Within-cluster
error correlation: 𝜙 = 0.5. Degree of endogeneity: 𝜌 = 0.95. Skedastic function: 𝑓

(
z1,g, 𝜅

)
= h(𝜅)

(
𝛊g + 2z1,g

)𝜅 . The weights Γ and R correspond
to the gamma and Rademacher weights, respectively. The effective F-test uses 5% critical values under a 10% tolerance for bias.

{
dg
}G

g=1 and
{
𝝑g
}G

g=1 sampled from independent normal distributions.19 To save space, we report only results for the two
AR bootstrap tests, the EE and SE-eff, with some heteroskedasticity in the errors (𝜅 = 1), Rademacher bootstrap weights,
and errors sampled from standard normal distributions. Results with different degrees of heterogeneity (𝜅 = 0 and 𝜅 = 2)
are similar to those reported below and are included in Section S.8 of the Supporting Information Supplement as well.
The power curves of the AR SE-in bootstrap test are close to those obtained from the AR SE-eff bootstrap test and are
power dominated when 𝜂 = 2, so these results are also not reported.

In the left-hand column of Figure 2 the endogeneity is low (𝜌 = 0.20), whereas in the right-hand column endogeneity
is high (𝜌 = 0.95). The rows vary in 𝜂, the parameter capturing the heterogeneity in the number of observations within
clusters. The x-axis represents the value of 𝜃 under the true DGP. The curves are obtained by testing the null assumption
H0 ∶ 𝜃 = 0 against the alternative H1 ∶ 𝜃 ≠ 0 at the 5% significance level.

The graphs show that the asymptotic AR test has rejection rates above 20% when the null assumption H0 ∶ 𝜃 =
0 is true and the nominal level is 5%, whereas the bootstrap test has rejection rates very close to 5% at the same
point.

In our experiments, the simulation results show that the SE-eff bootstrap method power dominates the EE bootstrap
when 𝜂 = 0 and 𝜂 = 1, whereas with strong differences in observations across clusters (𝜂 = 2), the opposite result is
observed. Therefore, there is no dominant AR bootstrap test in terms of power.

Overall, the performance of the AR SE-eff bootstrap test in terms of size is at least as good as those of the other bootstrap
methods. The AR SE-eff bootstrap test also has better power properties compared with the AR EE bootstrap test when
heterogeneity and cluster size are not extreme.

19The results for instruments sampled from a log-normal distribution are similar to those based on a normal distribution; however, the power curves
based on log-normal instruments are flatter compared to those obtained from normally distributed instruments.
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FIGURE 2 Power comparisons of asymptotic and bootstrapped AR statistics, 10,000 Monte Carlo simulations: (a) 𝜌 = 0.20, 𝜂 = 0;(b)
𝜌 = 0.95, 𝜂 = 0; (c) 𝜌 = 0.20, 𝜂 = 1; (d) 𝜌 = 0.95, 𝜂 = 1; (e) 𝜌 = 0.20, 𝜂 = 2; (f) 𝜌 = 0.95, 𝜂 = 2. Authors' calculations with 999 bootstrap
replications for each simulation using Rademacher weights and a DGP with normal errors. EE is the AR estimating equations bootstrap test;
SE-eff is the AR efficient single-equation residual bootstrap test (see Section 5.2). The sample size is 400 observations with 20 clusters: 𝜂 = 0
indicates 20 observations per cluster, and 𝜂 = 1 and 𝜂 = 2 indicate observations per cluster in the range of 12–29 and 7–42, respectively. Number
of excluded/included instruments: kz = 5∕kx = 1. Noncentrality parameter of first-stage F-test: 𝜇kz

= 18. Within cluster error correlation:
𝜙 = 0.5. Skedastic function: 𝑓

(
z1,g, 𝜅

)
= h(𝜅)

(
𝛊g + 2z1,g

)𝜅 evaluated at 𝜅 = 1 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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7 CONCLUSION

Inference in a linear IV model with clustered errors can be very misleading using asymptotic methods when the number
of clusters is small, even when the instruments are strong. We propose two bootstrap methods for the cluster-robust
version of the AR test, the estimating equations, and the single-equation residual bootstraps. These methods impose the
null assumption for generating the bootstrap scores and residuals and are akin to wild bootstrap methods.

In two empirical applications—the study of how institutions affect economic growth and the impact of the economy on
civil conflict—we demonstrated the importance of bootstrapping for estimating confidence sets. In the first application,
the AR bootstrap confidence regions are much larger than the AR asymptotic confidence region when the instruments
are weak and are smaller when the instruments are strong (measured by the effective F-test). In the second application,
both the Wald and AR asymptotic and bootstrap confidence regions are also very different from the asymptotic ones. In
particular, the AR asymptotic and bootstrap confidence regions indicate no evidence that poor economic performance
affects the probability of a civil conflict arising in sub-Saharan countries.

Our simulations show that asymptotic tests are size distorted when the instruments are strong and the number of clus-
ters is relatively large. The same simulations show that our proposed bootstrap methods for the AR test present rejection
probabilities close to the nominal size. These results are robust to different error distributions, the degree of heterogeneity,
the numbers of observations per cluster, and the number of exogenous instruments. In terms of power, the single-equation
residual bootstrap dominates the score bootstrap in most cases; however, the score bootstrap dominates the residual
bootstrap when the difference in observations across clusters is considerable.

We have found that asymptotic tests can have the incorrect size with as many as 80 clusters and with first stages consider-
ably stronger than those considered appropriate in the empirical literature. At a minimum, our wild bootstrap techniques
could be broadly used as diagnostic tools and to conduct inference, especially when there is any uncertainty about the
impact of cluster sampling or instrument weakness. The empirical applications in the paper also demonstrate that boot-
strapping is consequential for inference in specifications that add controls, stratify the sample, reduce sample variation,
or reduce the number of clusters. In empirical work, these may be cases that are not the main specification, but are used
as robustness checks. The wild bootstrap becomes even more useful under those situations.
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