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Abstract

Microeconomic data often have within-cluster dependence. This dependence affects

standard error estimation and inference in the instrumental variables model. When

the number of clusters is small, Wald and weak-instrument tests can be severely over-

sized. We examine the use of bootstrap methods and find that variants of the wild

bootstrap perform well and reduce absolute size bias significantly, independent of

instrument strength or cluster size. We also provide guidance in the choice among

weak-instrument tests when data have cluster dependence. Two empirical examples
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1 Introduction

Microeconometric data often have a group structure. When regression errors are cor-

related within these groups or clusters, it is well known that standard error estimates

can be biased and hypothesis testing can be misleading. The common solution to this

problem is to use cluster-robust standard error estimation methods that requires a large

number of clusters. When the number of clusters is small, tests can be oversized even

when cluster-robust methods are used (Cameron et al., 2008).

In the linear instrumental variable (IV) model, we show that the Wald and weak-

instrument tests, which use the corrected cluster-robust standard errors, are size distorted

when the number of clusters is small, under both strong and weak identification scenar-

ios. For the weak instrument tests, we propose bootstrap techniques that perform well

when the number of clusters is as few as 20 and the instruments are weak.

Our Monte Carlo simulations provide strong evidence of the benefit of bootstrap

techniques in the linear IV model. We find rejection rates level as high as 0.50 with

Wald tests in a strong instruments scenario when the nominal level is 5%. Cluster-robust

versions of the Wald tests can reduce the rejection rates to 0.15 to 0.20, but never as low

as the nominal size. Using our cluster estimating equations and residuals bootstraps, we get

rejection rates that are very close to 0.05.

Recent work has highlighted the use of the bootstrap to improve inference when

there is intra-cluster dependence. In the linear model with only exogenous covariates,

Cameron et al. (2008) show that a variant of the wild bootstrap (Wu, 1986) with cluster-

based sampling performs well in a variety of cases, and bootstrap tests dominate the

asymptotic tests in terms of size. Using Edgeworth expansions, Kleibergen (2011) show

that the bootstrap decreases the size distortion of weak instrument tests. Davidson and

MacKinnon (2008) develop bootstrap techniques for linear IV models assuming that resid-

uals are homoskedastic. Later, they extend the bootstrap by allowing residual heteroskedas-

ticity but only at the individual level (Davidson and MacKinnon, 2010).

Gelbach et al. (2007) implement a variant of the wild cluster bootstrap of Cameron

et al. (2008) for the Wald test in an instrumental variables setting. They examine its

performance in Monte Carlo simulations and find that it performs well. But they assume
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that instruments are strong and do not investigate the performance of weak instrument

tests. In fact, in small samples our simulations indicate that the numerical accuracy of the

bootstrapped Wald test may be even worse than the asymptotic weak instrument tests.

It is well known that bootstrap techniques cannot improve performance of the Wald

test when instruments are weak (Moreira et al., 2009; Davidson and MacKinnon, 2008;

Zhan, 2010). Our results show that weak-instrument-robust tests outperform the Wald

test when instruments are undoubtedly strong (i.e., the concentration parameter is greater

than 200). Thus, we recommend the use of weak instrument tests whether or not instru-

ments are strong. The use of our bootstrap methods with weak-instrument tests provides

a comprehensive and practical alternative for testing parameters in the linear IV model

when data have cluster dependence.

We also investigate the performance of the first-stage F-test and the conservative

version of effective F-test proposed by Olea and Pflueger (2013). Both tests test the null

assumption that instruments are weak. Our simulation results shows that the first-stage

F overrejects the null while the effective F-test underrejects it. However, the bootstrap

version of these tests give similar rejection rates.

The paper proceeds as follows. First, we introduce our versions of weak-instrument-

robust tests suitable for clustered residuals. Then, we describe our bootstrap techniques

and the Monte Carlo experiments that illustrate the performance of these techniques.

Two empirical applications of the bootstrap methods, one about civil conflict in Africa

(Miguel et al., 2004) and the another about the role of institutions on economic perfor-

mance (Acemoglu et al., 2001) end the paper. Some derivations and technical details are

in the Appendix.

2 Cluster-robust inference

We consider the following limited-information cluster model withG clusters, indexed by

g:  y1,g = y2,gθ + xgγ + ug

y2,g = wgΠw + vg

for g = 1, . . . , G, (1)
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where y1,g is a ng×1 vector, y2,g is a ng×pmatrix of endogenous explanatory variables, xg

is a ng×kx vector of included instruments, wg = [zg: xg] is a ng×kw matrix of instruments,

zg and xg are ng × kz and ng × kx matrices of excluded and included instruments with

kw = kz+kx, and Πw = [Π′z Π′x]′ is a kw×pmatrix of first-stage, reduced-form parameters.

We assume that

E
[
(ug, vec (vg)) (ug, vec (vg))

′] = Σg =

 Σugug Σugvg

Σvgug Σvgvg


and (ug,vg) are independent across clusters. The equations in (1) have the following

general form representation:

y1 = y2θ + Xγ + u (2)

y2 = WΠw + V, (3)

where y1 is a n × 1 vector, y2 is a n × p matrix of endogenous explanatory variables,

W = [Z : X] is a n×kw matrix of instruments, and Z and X are n×kz and n×kx matrices

of excluded and included instruments respectively, with kw = kx + kz and n =
∑G

g=1 ng.

We are interested in making inference about the structural vector parameter θ. For

example, we may want to test the following hypotheses:

Hθ
0 : θ = θ0 against Hθ

1 : θ 6= θ0.

The usual procedure for inference is the Wald test, defined as:

(
θ̂IV − θ0

)′ (
V̂ar(θ̂IV)

)−1 (
θ̂IV − θ0

)
, (4)

where θ̂IV = (y′2PMXZy2)−1 y′2PMXZy1 is the two-stage least squares (TSLS) estimator, PA

=A
(
A′A

)−1A′, MA =I−PA, and V̂ar(θ̂IV) is an estimator of Var(θ̂IV), the variance of θ̂IV.

When the errors are assumed to be independent and identically distributed (iid), the

estimator of the variance is V̂arh(θ̂IV) = σ̂2
u (y′2PMXZy2)−1, where σ̂2

u = 1
n û(θ̂IV)′û(θ̂IV),

and û(θ̂IV) =MX(y1−y2θ̂IV). However, in the presence of intra-cluster dependence, even
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if this dependence is negligible, we can use the arguments in Moulton (1990) to show that

V̂arh(θ̂IV) underestimates the variance of θ̂IV.

The most commonly used estimator of Var(θ̂IV) is an adaptation of the Huber-White

heteroskedasticity robust sandwich estimator (White, 1980; Arellano, 1987), which does

not impose any structure on the variance of error term:

V̂ar
(
θ̂IV

)
=
(
y′2PMXZy2

)−1

 G∑
g=1

(PMXZy2)′g Σ̂g(θ̂IV) (PMXZy2)g

(y′2PMXZy2

)−1 , (5)

where (PMXZy2)g is the ng × p submatrix PMXZy2 associated to the gth cluster, Σ̂g(θ̂IV) =

ûg(θ̂IV)û′g(θ̂IV), and ûg(θ̂IV) is the two-stage least squares (TSLS) residual of the gth cluster.

The sandwich estimator does not suffer from the underestimation described above and is

general enough to accommodate different residual structures. The distributions of statis-

tical tests based on the cluster-robust variance estimator, however, can differ considerably

from their asymptotic distributions when the number of clusters is small.1

The consistency of the estimator θ̂IV depends on whether instruments Z are suffi-

ciently correlated with the explanatory endogenous variables y2 (i.e., ‖Πz‖ 6= 0). Tests

based on the first-stage F-statistic for detecting weak instruments, such as those proposed

by Stock and Yogo (2005) and Sanderson and Windmeijer (2015), assume that residuals

are homoskedastic. Bun and de Haan (2010) show that, with nonscalar error covariance

structure, the standard and the cluster-robust versions of the first-stage F-test can overes-

timate the strength of instruments. The test for weak instruments proposed by Olea and

Pflueger (2013) allows clustered residuals, but only one endogenous variable. In Section

4, our simulation results show that the overestimation of cluster-robust first-stage F-test

is more severe when the number of clusters is small, while the conservative version of

the Olea-Pflueger test underestimates instrument strength.

There are a number of statistical tests which have asymptotic and nominal size equal-

ity, independent of the presence of weak instruments, such as the AR-test (Anderson and

Rubin, 1949), the score or KLM-test (Kleibergen, 2002, 2007), and the CLR-test (Moreira,

2003). These tests were originally developed under the assumption that the distribution

of the errors is iid, but have been adapted to allow for arbitrary heteroskedasticity or

1See Cameron et al. (2008) for the simple linear regression model, and simulations in Section 4.
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cluster dependence of the residuals (Chernozhukov and Hansen, 2008; Finlay and Mag-

nusson, 2009).

We start by redefining equations (2) and (3) as:

Y (θ0) =Wδw (θ0) + e (θ0) (6)

y2 =WΠw + V, (7)

where Y (θ0) = y1−y2θ0, e (θ0) = u + Vd(θ0), δw (θ0) =
[
δz (θ0)′ ,δx (θ0)′

]′
= Πwd (θ0) +Hγ,

Πw = [Π′z,Π
′
x]′, d (θ0) = (θ − θ0) and H= [0,Ikx ]′. Equations (6) and (7) can be further

rewritten as:

δ̂w (θ0) = Πwd (θ0) + Hγ︸ ︷︷ ︸
δw(θ0)

+
(
W′W

)−1
W′e (θ0) (8)

Π̂w = Πw +
(
W′W

)−1
W′V,

where δ̂w (θ0) = [δ̂z (θ0)′ ,δ̂x (θ0)′]′ = (W′W)−1 W′Y (θ0) and Π̂w = [Π̂′z, Π̂
′
x]′ = (W′W)−1

W′y2 are respectively the OLS estimators of the reduced form parameters in equations

(6) and (7). The kw (p+ 1)×kw (p+ 1) “sandwich” matrix that corresponds to the cluster-

robust estimator of variance of [δ̂w (θ0)′ , π̂′w], where π̂w = vec(Π̂w), has the form

Ω̂ (θ0) =
(
Ip+1 ⊗W′W

)−1
Ξ̂ (θ0)

(
Ip+1 ⊗W′W

)−1 , (9)

where Ξ̂ (θ0) is the estimator of the kw (p+ 1)×kw (p+ 1) variance matrix of vec(W′e (θ0) ,

W′V).2

Let us introduce four more statistics before presenting the cluster version of the weak-

instrument tests:

λ̃KLM (θ0) = Π̃z (θ0)′
[
Ω̂δzδz (θ0)

]−1
δ̂z (θ0) ,

Π̃z (θ0) = mat

(
π̂z − Ω̂πzδz (θ0)

[
Ω̂δzδz (θ0)

]−1
δ̂z (θ0)

)
,

V̂ar
(
λ̃KLM (θ0)

)
= Π̃z (θ0)′

[
Ω̂δzδz (θ0)

]−1
Π̃z (θ0) , and

2Details on Appendix A.
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V̂ar (π̃z (θ0)) = Ω̂πzπz − Ω̂πzδz (θ0)
[
Ω̂δzδz (θ0)

]−1
Ω̂δzπz (θ0) ,

where λ̃KLM (θ0) is the Lagrange multiplier of a constrained minimum-distance mini-

mization problem3, π̂z = vec(Π̂z) is a kzp × 1 vector, mat is the rematricizing operator

that maps the kzp × 1 vector vec(Π̂z) into the kz × p matrix Π̂z , and Ω̂πzδz (θ0) is the

submatrix of Ω̂ (θ0) associated to the covariance estimator of (π̂z, δ̂z (θ0)). The estimators

of the variances of λ̃KLM (θ0) and π̃z (θ0), where π̃z (θ0) = vec(Π̃z (θ0)) are V̂ar(λ̃KLM (θ0))

and V̂ar (π̃z (θ0)), respectively.

We define the weak-instrument tests for the cluster-sample model as follows:

Definition 1. (Weak-instrument Tests with clustered residuals). The AR, KLM, and CRL

statistics for testing the null hypothesis H0 : d (θ0) = 0 are, respectively:

ΛAR (θ0) ≡ δ̂z (θ0)′
[
Ω̂δzδz (θ0)

]−1
δ̂z (θ0)

d→ χ2 (kz) ,

ΛKLM (θ0) ≡ λ̃KLM (θ0)′
[
V̂ar

(
λ̃KLM (θ0)

)]−1
λ̃KLM (θ0)

d→ χ2 (p) , and

ΛCLR (θ0) ≡
{

1

2
ΛAR (θ0)− rk (θ0) +√
[ΛAR (θ0) + rk (θ0)]2 − 4 [ΛAR (θ0)− ΛKLM (θ0)]× rk (θ0)

}
,

where rk (θ0) is a statistic for testing the rank of Π̃z (θ0).

The symbol “ d→”stands for convergence in distribution and χ2 (s) is the chi-squared

distribution with s degrees of freedom. The CLR-statistic converges to a nonpivotal

distribution; however, its critical values, for a given value of rk (θ0), can be simulated

from independent χ2(kz − p) and χ2(p) distributions. The tests converge independently

of instrument strength.

The above statistics have the correct size asymptotically even when the structural

parameter θ is not identified; however, they tests are inconsistent if Πz = 0.4 The ΛAR (θ0)

statistic tests if d (θ0) = 0 indirectly by testing the assumption Hδ
0 : δz (θ0) = 0 against

Hδ
1 : δz (θ0) 6= 0. The degrees of freedom of the ΛAR (θ0)-test’s asymptotic distribution

depends on kz , the number of excluded instruments, which can be larger than p, the

3See derivation in Appendix B.
4The tests will not reject H0 : d (θ0) = 0 when H1 : d (θ0) 6= 0 is true, because the estimated value of δz

will be close to 0, independent if ‖θ − θ0‖ > 0 .
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number of tested parameters. The larger is the difference kz − p, the less powerful is

the ΛAR (θ0)-test. The ΛKLM (θ0)-test degrees of freedom is equal to the number of tested

structural parameters, independent of the number of excluded instruments. Neverthe-

less, the ΛKLM (θ0)-test, as a LM type of test, loses power at local extremum and inflection

points of the ΛAR (θ0)-test. The ΛCLR (θ0)-test, because it is a function of the ΛAR (θ0)-test,

does not show spurious decline of power experienced by the ΛKLM (θ0)-test.

Remark 2.1. The ΛAR (θ0)-test also has a Lagrange-multiplier interpretation. It can be

rewritten as

ΛAR (θ0) ≡ λ̃AR (θ0)′ [V̂ar(λ̃AR (θ0))]−1λ̃AR (θ0) ,

where λ̃AR (θ0) = [Ω̂δzδz (θ0)]−1δ̂z (θ0) is the Lagrange multiplier of constrained-minimization

problem (A-3), and V̂ar
(
λ̃AR (θ0)

)
is the estimated variance of λ̃AR (θ0).

Remark 2.2. The KLM -test is originally derived from the continuously updating estimator

(CUE) objective function. The first-order condition of that problem includes the deriva-

tive of the variance with respect to the parameters. The ΛKLM (θ0) is derived from the two-

step minimum-distance estimator objective function, which does not require the deriva-

tive of the variance with respect to the parameters.5 Because of the regression model

is linear, the minimum-distance estimates of the untested well-identified parameters are

the same as the GMM-CUE estimator under the null assumption (Goldberger and Olkin,

1971).

Remark 2.3. If θ is scalar, the rank statistic rk (θ0) is defined as:

rk (θ0) ≡ Π̃z (θ0)′
[
V̂ar

(
Π̃z (θ0)

)]−1
Π̃z (θ0) .

If θ is not scalar, then the rank statistics proposed by Kleibergen and Paap (2006) or

Kleibergen and Mavroeidis (2009) should be used.

3 Bootstrap methods for the cluster-sample IV model

In many microeconometric applications, data have intra-cluster dependence in which

the number of clusters are small and, consequently, the asymptotic results are a poor

5See the derivation of λ̂KLM (θ0) in Appendix B.
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approximation of the true distributions of the test statistics. For example, many papers

in labor economics use research designs that rely on policy changes at the state level,

in which the number of clusters is at most 51 in USA and 8 in Australia. Our simula-

tions show that asymptotic tests that use cluster-robust variance estimators may under-

or overreject with as many as 160 clusters. Therefore, bootstrapping them accordingly

can also improve their performance in terms of size, when the number of clusters are

small. We next discuss two classes of bootstrap methods for weak instrument tests in

linear IV cluster model represented by system (1): the estimating equations and residual

bootstraps.

Estimating equations (score) bootstrap

We begin the exposition by rewriting equation (8) as:

δ̂w (θ0) = δw (θ0) +
(
W′W

)−1
G∑
g=1

w′geg (θ0)︸ ︷︷ ︸
hg(θ0)

.

A simple idea about bootstrapping the distributions of δ̂w (θ0) is based on perturbing

the empirical distribution of the scores {hg (θ0)}Gg=1, but keeping the Hessian (W′W)−1

fixed. Hu and Zidek (1995) denote this type of bootstrap the estimating equations (EE)

bootstrap.6

Under H0 : d (θ0) = 0, a candidate bootstrap estimator for δw (θ0) is:

δ̃∗w (θ0) = δ̃w (θ0) +
(
W′W

)−1
G∑
g=1

h̃∗g (θ0) , (10)

where δ̃w (θ0) = (0, δ̃x (θ0)), and δ̃x (θ0) = δ̂x (θ0)− Ω̂δxδz (θ0)
[
Ω̂δzδz

]−1
δ̂z (θ0). The δ̃w (θ0)

is the estimator of δw (θ0) derived from equation (A-3). The sequence of bootstrap scores{
h̃∗g (θ0)

}G
g=1

is sampled with replacement from the recentered scores {h̃rg (θ0)}Gg=1, de-

fined as:

h̃rg (θ0) = h̃g (θ0)− ng
n

G∑
g=1

h̃g (θ0) ,

6See also Hu and Kalbfleisch (2000) and Kline and Santos (2012).
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where h̃g (θ0) = w′gẽg (θ0), and ẽg (θ0) = Yg (θ0)−wg δ̃w (θ0).7

The estimator of the variance of δ̃∗w (θ0), denoted by Ω̃∗δwδw (θ0), is a function of
{

h̃∗g (θ0)
}G
g=1

and does not depend on δ̃∗w (θ0) itself. This implies a computational gain of the EE

bootstrap over the residual-type bootstraps discussed below.

We define the bootstrap estimator of λ̃KLM (θ0) conditional on Π̃z (θ0) as:

λ̃∗KLM (θ0) = Π̃z (θ0)′
[
Ω̃∗δzδz (θ0)

]−1
δ̃∗z (θ0) , (11)

where Ω̃∗δzδz (θ0) is the block variance of Ω̃∗δwδw (θ0) associated with the estimator δ̃∗z (θ0)

obtained from equation (10). The ΛCLR-test, conditional on rk (θ0), are functions of the

ΛAR-, and ΛKLM tests. Therefore, bootstrap realizations of the ΛCLR-test are generated

from the bootstrap realizations of the ΛAR- and ΛKLM-tests.

The general algorithm for computing the bootstrap tests are:

1. Compute ΛAR (θ0), ΛKLM (θ0), and ΛCLR (θ0) and save the estimates of Π̃z (θ0) and

rk (θ0).

2. For b = 1, . . . , B bootstrap simulations:

(a) Sample {ωg}Gg=1, a sequence of bootstrap weights, and define the bootstrap

score realizations as:

{
h̃∗1 (θ0) , . . . , h̃∗G (θ0)

}
=
{
ω1h̃

r
1 (θ0) , . . . , ωGh̃rG (θ0)

}
.

(b) Compute δ̃∗w (θ0) and its associated variance Ω̃∗δwδw (θ0).

(c) Compute λ̃∗KLM (θ0), given by equation (11), and its variance V̂ar(λ̃∗KLM (θ0)),

which is:

V̂ar
(
λ̃∗KLM (θ0)

)
= Π̃z (θ0)′

[
Ω̃∗δzδz (θ0)

]−1
Π̃z (θ0) .

(d) The bth bootstrap tests are:

Λ̃∗AR,b (θ0) = δ̃∗z (θ0)′
[
Ω̃∗
δ̂z δ̂z

(θ0)
]−1

δ̃∗z (θ0)

Λ̃∗KLM,b (θ0) = λ̃∗KLM (θ0)′
[
V̂ar

(
λ̃∗KLM (θ0)

)]−1
λ̃∗KLM (θ0) , and

7If the number of observations per cluster is the same, then ng
n

= 1
G

.
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Λ̃∗CLR,b (θ0, b) =

{
1

2
Λ̃∗AR,b (θ0)− rk (θ0) +√[
Λ̃∗AR,b (θ0) + rk (θ0)

]2
− 4

[
Λ̃∗AR,b (θ0)− Λ̃∗KLM,b (θ0, b)

]
× rk (θ0)

}
.

3. The bootstrap p-value for a test is:

p̃∗-value =
1

B

B∑
b=1

I
(

Λ̃∗[·],b (θ0) > Λ[·] (θ0)
)
,

where I (·) is the indicator function and Λ[·] represents the ΛAR-, ΛKLM-, or ΛCLR-

test. Reject the assumption if p̃∗-value is smaller the desired significance level of

the test.

Next we discuss two types of estimating equation bootstraps.

Definition 2. (Estimating Equation (EE) Bootstrap) Let {ωg}Gg=1 be a sequence of boot-

strap weights. Conditional on Π̃z (θ0) and rk (θ0), the EE bootstrap weak instrument tests

are computed from the bootstrap score sequence
{

h̃∗g (θ0)
}G
g=1

= {ωgh̃rg (θ0)}Gg=1. We

consider two bootstrap weights:

1. {ωg}Gg=1 are sampled from a multinomial distribution, so that

Pr
(
h̃∗g (θ0) = h̃j (θ0)

)
=

1

G
, j = 1, . . . , G.

2. {ωg}Gg=1 be an iid sequence sampled from a distribution satisfying E [ωg] = 0 and

Var (ωg) = 1. We discuss the specific distributions below.

The EE bootstrap with multinomial weights is the same as the bootstrap algorithm

1 of Kleibergen (2011) for GMM models. The second bootstrap is similar to the wild

score bootstrap proposed by Kline and Santos (2012). They assume, however, that the

tested parameter is identified and consistently estimated. Therefore, the empirical score

is obtained by replacing the tested parameters by their two-step GMM estimates. Clearly,

the 2-step GMM estimator is biased when instruments are weak.

Remark 3.1. Sampling the score from
{
ωgh̃

r
g (θ0)

}G
g=1

corresponds to sampling the resid-

uals from {ω̄gẽg (θ0)}Gg=1 where ω̄g = ωg − ω̄ and ω̄ =
(∑G

g=1
ωgng
n

)
. We can interpret
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{ω̄g}Gg=1 as the sequence of adjusted bootstrap weights.

Remark 3.2. Define δ́w (θ0) = (0, δ́x (θ0)), where δ́x (θ0) = (X′X)−1X′Y (θ0), and δ̂w (θ0) =

(δ̂z (θ0) , δ̂x (θ0)), where δ̂w (θ0) =(W′W)−1W′Y (θ0). The estimators δ́w (θ0) and δ̂w (θ0)

could replace δ̃w (θ0) in equation (10). The bootstrap scores are generated as before, and

recentering is unnecessary if a constant is included in xg. In the case of using δ̂w (θ0),

δ̂z (θ0) is the mean of the distribution of the bootstrap estimator δ̂∗z (θ0). Therefore, in

computing the bootstrap version of the tests, δ̃∗z (θ0) should be replaced by δ̂∗z (θ0)−δ̂z (θ0).

Residual bootstraps

By resampling the estimated residuals, we can generate bootstrap samples. The bootstrap

weak instrument tests are computed in the same way as the asymptotic ones, using the

bootstrap sample in place of the original data. We consider two types of residual boot-

straps. In the first version, we bootstrap the residuals only from the auxiliary regression,

see equation (6). In the second version, we sample residuals from equations (6) and (7)

simultaneously.

Single-equation residual bootstrap

Let {ég (θ0)}Gg=1 be a sequence of residuals, where ég (θ0) = Yg (θ0) − wg δ́w (θ0) is the

ng × 1 vector associated to the gth cluster, and δ́w (θ0) is defined in Remark 3.2. We define

Ý∗ (θ0), the bootstrap realization of Y (θ0), as:

Ý∗ (θ0) = Wδ́w (θ0) + é∗ (θ0) ,

where é∗ (θ0) = (é∗1 (θ0)′ , . . . , é∗G (θ0)′)′,
{
é∗g (θ0)

}G
g=1

= {ωgég (θ0)}Gg=1. We define the

bootstrap estimates of δw (θ0) and λKLM (θ0) as:

δ́∗w (θ0) =

[
δ́∗z (θ0)′ δ́∗x (θ0)′

]′
=
(
W′W

)−1
W′Ý∗ (θ0) , and

λ́∗KLM (θ0) = Π̃z (θ0)′
[
Ώ∗δ∗zδ∗z (θ0)

]−1
δ́∗z (θ0) ,
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where Ώ∗δ∗zδ∗z (θ0) is an estimator of variance matrix δ́∗z (θ0).8 This differs from the EE

bootstrap in that Ώ∗δ∗zδ∗z (θ0) is a function of δ́∗z (θ0).

The steps for implementing the residual bootstrap are similar to those for the EE

bootstrap. In step 2a, we use a sequence of
{
é∗g (θ0)

}G
g=1

= {ωgég (θ0)}Gg=1. In steps 2b

and 2c, we compute δ́∗w (θ0), λ́∗KLM (θ0), Ώ∗δ∗zδ∗z (θ0), and

V̂ar
(
λ́∗ (θ0)

)
= Π̃z (θ0)′

[
Ώ∗δ∗zδ∗z (θ0)

]−1
Π̃z (θ0) .

The bth bootstrap Λ́∗AR,b (θ0), Λ́∗KLM,b (θ0) and Λ́∗CLR,b (θ0) tests are obtained by replacing

δ̃∗z (θ0), Ω̃∗
δ̂z δ̂z

(θ0), λ̃∗KLM (θ0), and V̂ar
(
λ̃∗KLM (θ0)

)
with δ́∗w (θ0), Ώ∗δ∗zδ∗z (θ0), λ́∗KLM (θ0), and

V̂ar
(
λ́∗ (θ0)

)
in the formulas of step 2d, respectively.

Definition 3. (Single-equation residual (SE) bootstrap): Let {ωg}Gg=1 be a sequence of

bootstrap weights satisfying E [ωg] = 0 and Var (ωg) = 1. Conditional on Π̃z (θ0) and

rk (θ0), the bootstrap data generating process (dgp) is:

1. Inefficient SE (SE-in):{
Ý∗g (θ0)

}G
g=1

=
{

wg δ́w (θ0) + é∗g (θ0)
}G
g=1

, where
{
é∗g (θ0)

}G
g=1

= {ωgég (θ0)}Gg=1;

and

2. New efficient SE (SE-neff):{
Ỹ∗g (θ0)

}G
g=1

=
{

wg δ̃w (θ0) + ẽ∗g (θ0)
}G
g=1

, where
{
ẽ∗g (θ0)

}G
g=1

= {ωgẽg (θ0)}Gg=1.

Remark 3.3. If a constant is not included in xg, then the fitted residuals {ég (θ0)}Gg=1 should

be recentered.

Remark 3.4. As in Remark 3.2, we could use
{
ê∗g (θ0)

}G
g=1

= {ωgêg (θ0)}Gg=1, where êg =

Yg (θ0) − wg δ̂w (θ0) to generate bootstrap realizations of Y (θ0). Then, when comput-

ing the bootstrap weak instrument tests, δ̂∗z (θ0) − δ̂z (θ0) should be in place of δ́∗z (θ0),

where δ̂∗z (θ0) is the bootstrap estimator. In this case, the only difference between the

EE and SE bootstrap weak instrument test is the bootstrap estimator of the variance of

δ∗z (θ0). For the EE bootstrap, we use
{
ê∗g (θ0)

}G
g=1

, while for the SE bootstrap, we use use

{ê∗b,g (θ0)}Gg=1, where ê∗b,g (θ0) = Ŷ∗g (θ0)−wg δ̂
∗
w (θ0) to estimate the variance.

8See definition in Appendix A.
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Multi-equation residual bootstraps

The bootstrap dgp for the limited-information model system (1) can be set as:

 Ý∗g (θ0) = wg δ́w (θ0) + é∗g (θ0)

ŷ∗2,g = wgΠ̂w + v̂∗g,

where
{
é∗g (θ0) , v̂∗g

}G
g=1

= {ωgég (θ0) , ωgv̂g}Gg=1, ég (θ0) = Yg (θ0) − wg δ́w (θ0) and v̂g =

y2,g −wgΠ̂w.

Davidson and MacKinnon (2010) propose a more efficient bootstrap procedure that

incorporates information about the correlation structure between eg and vg when esti-

mating the first-stage residuals. They first estimate Πw using the following auxiliary

regression model

y2 = WΠw + é (θ0) Γ + residuals, (12)

to obtain V́ (θ0) = y2 −WΠ́w (θ0), where Π́w (θ0) is the OLS estimator of Πw. If the

residuals are homoskedastic, Π́w (θ0) would be equivalent to the three-stage least squares

(3SLS) or limited-information maximum likelihood estimator (under residual normality).

Under cluster residuals, however, Π̃w (θ0), the estimator of Πw derived from equation (A-

1), incorporates information about the cluster nature of the residual covariance matrix.

Therefore, the cluster residual for the bootstrap dgp is

{
é∗g (θ0) , ṽ∗g (θ0)

}G
g=1

= {ωgég (θ0) , ωgṽg (θ0)}Gg=1 ,

where ṽg (θ0) = y2,g −wgΠ̃w (θ0).

Let γ̃ (θ0) be the continuous updating estimator derived from equation (A-1). A new

bootstrap procedure uses ẽg (θ0) = Yg (θ0) − xgγ̃ (θ0) in place eg (θ0) for the bootstrap

dgp: {
ẽ∗g (θ0) , ṽ∗g (θ0)

}G
g=1

= {ωgẽg (θ0) , ωgṽg (θ0)}Gg=1 .

The multi-equation residual bootstrap weak instrument tests are computed using the

same formulas as the asymptotic tests described in Section 2 using the bootstrap sample

in place of the original one. In contrast with the EE and SE bootstraps, the estimated of
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values of Π̃z (θ0) in step 1 do not need to be retained.

The three discussed multi-equation residual bootstraps are:

Definition 4. (Multi-equation residual (ME) bootstrap): Let {ωg}Gg=1 be a sequence of

bootstrap weights satisfying E [ωg] = 0 and Var (ωg) = 1. The bootstrap dgp (dgp) for

{Yg (θ0) ,y2,g}Gg=1 is:

1. Inefficient ME (ME-in):{
Ý∗g (θ0) , ŷ∗2,g

}G
g=1

=
{

wg δ́w (θ0) + é∗g (θ0) ,wgΠ̂w + v̂∗g

}G
g=1

, where

{
é∗g (θ0) , v̂∗g

}G
g=1

= {ωgég (θ0) , ωgv̂g}Gg=1 ;

2. Efficient ME (ME-eff):{
Ý∗g (θ0) , ỹ∗2,g (θ0)

}G
g=1

=
{

wg δ́w (θ0) + é∗g (θ0) ,wgΠ̃w (θ0) + ṽ∗g (θ0)
}G
g=1

, where

{
é∗g (θ0) , ṽ∗g (θ0)

}G
g=1

= {ωgég (θ0) , ωgṽg (θ0)}Gg=1 ; and

3. New efficient ME (ME-neff):{
Ỹ∗g (θ0) , ŷ∗2,g (θ0)

}G
g=1

=
{

xgγ̃ (θ0) + ẽ∗g (θ0) ,wgΠ̂w (θ0) + ṽ∗g (θ0)
}G
g=1

, where

{
ẽ∗g (θ0) , ṽ∗g (θ0)

}G
g=1

= {ωgẽg (θ0) , ωgṽg (θ0)}Gg=1 .

Remark 3.5. Since the ΛAR (θ0)-test does not depend on the first-stage equation, the SE-in,

ME-in, and ME-eff bootstraps are equal. For the same reason, the SE-neff and ME-neff

bootstraps are also equal.

Remark 3.6. The previous bootstrap procedures take the rank statistic as given. In this

case, the ME bootstrap version of the CLR-test as explained in Davidson and MacKinnon

(2008) requires a double bootstrap procedure: one bootstrap for the rank statistic and a

second bootstrap conditional on the bootstrapped rank statistic. Therefore, we have not

computed the ME version of this statistic.
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Other bootstrap methods

Davidson and MacKinnon bootstrap for weak instruments

In Section 4, we compare the performance of the proposed bootstraps to the wild restricted

efficient (WRE) residual bootstrap proposed by Davidson and MacKinnon (2010). The WRE

bootstrap simulates the distribution of the original AR- and KLM-tests, which are defined

respectively as:

AR(θ0) =
n− kw
kz

Y (θ0)′MXZ(Z′MXZ)−1Z′MXY (θ0)

Y (θ0)′MWY (θ0)
, and (13)

KLM(θ0) = (n− kw)
Y (θ0)′ PMXZΠ́w(θ0)Y (θ0)

Y (θ0)′MWY (θ0)
. (14)

The WRE bootstrap dgp are generated from residuals sampled at individual level. We de-

fine as Davidson and MacKinnon bootstrap (DM bootstrap) the WRE bootstrap method

with dgp are generated by residuals sampled at cluster instead, i.e.

{
Ý∗g (θ0) , ý∗2,g

}G
g=1

=
{

wg δ́w (θ0) + é∗g (θ0) ,wgΠ́w (θ0) + v́∗g (θ0)
}G
g=1

,

where
{
é∗g (θ0) , v́∗g (θ0)

}G
g=1

= {ωgég (θ0) , ωgv́g (θ0)}Gg=1 , with v́g (θ0) = y2,g −wgΠ́w (θ0).

If the residuals are homoskedastic, then the AR and KLM of equations (13) and (14)

are distributed asymptotically as F(∞,kz) and χ2 (p), respectively. Although the AR-test

is not pivotal if the residuals are heteroskedastic, Davidson and MacKinnon (2010) show

that the limiting distributions of n−
1
2 Z′MXY (θ0) and n−

1
2 Z′MXÝ∗ (θ0) are equal. The

same is true for the probability limits of n−1Y (θ0)′MWY (θ0) and n−1Ý∗ (θ0)′MWÝ∗ (θ0).

Therefore, since the AR-statistic and its wild bootstrap counterpart converge to the same

limit distribution, their bootstrap method is valid for the AR-test in the presence of

heteroskedastic errors. They also show that their bootstrap for the KLM-test is correct

if the concentration parameter is high. We can use the same arguments in Davidson and

MacKinnon (2010) to show that the DM bootstrap for the AR-test with cluster residuals is

consistent, assuming that the number of clusters is increasing as the sample size increases

and the number of observations within clusters is constant. However, the same argument

cannot be applied in the number of observations within each cluster increases at the same
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rate as the number of clusters.

Bootstrap for Wald tests

For the Wald test, we consider three types of bootstrap methods. Two of them are similar

to the multiequation residual bootstraps, in which the bootstrap residuals are sampled

from:

{
û∗g, v̂

∗
g

}G
g=1

= {ωgûg, ωgv̂g}Gg=1 and
{
é∗g (θ0) , ṽ∗g (θ0)

}G
g=1

= {ωgég (θ0) , ωgṽg (θ0)}Gg=1 ,

where ûg is the TSLS residual. Let θ̂∗IV be the bootstrap TSLS estimator obtained from

the bootstrap sample generated by the residual sequence
{
û∗g, v̂

∗
g

}G
g=1

. The Wald mul-

tiequation instrumental variable (ME-IV) bootstrap is the Wald statistic computed as in

equation (4), replacing (θ̂IV − θ0) with (θ̂∗IV − θ̂IV), and V̂ar(θ̂IV) by the bootstrap variance

estimate of θ̂∗IV. When the bootstrap sample is based on
{
é∗g (θ0) , ṽ∗g (θ0)

}G
g=1

, the boot-

strap residuals is the same as in the ME-eff bootstrap. In this case the Wald bootstrap

statistic is compute with (θ́∗IV − θ0) in place of (θ̂IV − θ0), where

θ́∗IV =
(
ỹ∗2 (θ0)′ PMXZỹ∗2 (θ0)

)−1
ỹ∗2 (θ0)′ PMXZý∗1 (θ0) ,

with ý∗1 (θ0) = ỹ∗2,g (θ0)×θ0 +xγ̃ (θ0)+ é∗ (θ0). For both Wald bootstrap tests, the variance

of the test is computed using the bootstrap sample and estimated parameters in equation

(5).

The third Wald bootstrap method is the classical pairs bootstrap. This method is a

completely nonparametric one. In the pairs bootstrap, the bootstrap sample is generated

as:

Pr
({

y∗1,g,y
∗
2,g,w

∗
g

}
= {y1,j ,y2,j ,wj}

)
=

1

G
, j = 1, . . . , G.

Since the pairs bootstrap dgp does not impose the null under hypothesis for generating

the bootstrap samples, the computation of the Wald bootstrap test is centered at the TSLS.

The test is computed by substituting the bootstrap estimates of θ and residuals into the

equations (4) and (5).
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Bootstrap first-stage F- and efficient F-tests

If there is one endogenous variable, the first-stage F-statistic for the null hypothesis H0 :

Πz = 0 is defined as:

F̂ ≡
Π̂′z

(
V̂ar(Π̂z)

)−1
Π̂z

kz
, (15)

where V̂ar(Π̂z) is the cluster-robust variance matrix. A more recent test for testing instru-

ment weakness suitable for clusters residuals is the effective F-statistic proposed by Olea

and Pflueger (2013), defined as

F̂eff ≡
y′2Z

⊥Z⊥′y2

n tr
(

Ξ̂Z⊥V

) ,

with effective degrees of freedom equal to:

K̂eff ≡

[
tr
(

Ξ̂Z⊥V

)]2
(1 + 2f)

tr
(

Ξ̂′
Z⊥V

Ξ̂Z⊥V

)
+ 2f tr

(
Ξ̂Z⊥V

)
max eval

(
Ξ̂Z⊥V

) ,

where Z⊥ = (ZMXZ)−
1
2 MXZ, Ξ̂Z⊥V is the estimator of the variance of n−

1
2 Z⊥′V, and

tr (·) and max eval (·) are the trace and the maximum eigenvalue operators, respectively.

The parameter f in the formula of K̂eff is a function of the maximum Nagar bias relative

to the benchmark, and require a numerical routine. We use the simplified and conserva-

tive version of the test which sets f = 10. In this case, the critical values for F̂eff are on

Table 1, page 360, of Olea and Pflueger (2013).

The computation of the F- and (conservative) effective F-tests are computed based

only on the first stage regression residuals (SE-1st). Under the assumption that the null

hypothesis is true, Πz = 0. Therefore, we generate bootstrap samples as

{
ý∗2,g

}G
g=1

=
{

wgΠ́w + v́∗g

}G
g=1

,

where
{
v́∗g
}G
g=1

= {ωgv́g}Gg=1, v́g = y2,g−wgΠ́w, and Π́w =
(

Π́z, Π́x

)
=
(

0, (X′X)−1 X′y2

)
.

The bootstrap tests are computed exactly as the original tests, and their respective p-

values are obtained as previously described. We also compute the pairs bootstrap version

of the first-stage F-test, which has the bootstrap statistic centered at Π̂z .
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Notes on the bootstrap algorithm

Residual weights. Apart from the pairs and EE bootstraps with multinomial (M) weights,

the remaining weights used for the proposed bootstraps satisfyE[ωg] = 0, andE[ω2
g ] = 1.

This ensures that the distribution of the resampled scores or residuals have the same the

first and second moments of their underlying empirical distributions. Matching higher

moments of the bootstrap and empirical distributions yields the asymptotic refinement.

Many residual weights satisfy this property for the wild bootstrap. Liu (1988) proposes

weights defined as ωg = ζg − E(ζg), where ζg is a gamma random variable with shape

parameter 4 and scale parameter 1
2 . The gamma (Γ) weights also satisfy E[ω3

g ] = 1,

and therefore match the first three moments. Davidson and MacKinnon (2010) suggest

sampling the weights from the Rademacher distribution, which is defined as

ωg =

 1 with probability 1/2

−1 with probability 1/2
.

The Rademacher (R) weights match the first four moments if the underlying distribution

is symmetric.9

A summary of the bootstrap methods used in the paper is presented in Table 1.

[Insert Table 1 here]

4 Monte Carlo simulations

We now evaluate the performance of the proposed cluster bootstraps using Monte Carlo

simulations, and we experiment with a variety of dgps. The baseline model has a struc-

ture that resembles the panel data random-effects regression. We repeat the system (1)

9Liu also proposes a continuous weight based on the normal distribution, defined as ωg = wgzg −
E(wg)E(zg), where wg and zg are independent normal random variables with mean 1

2
(
√

17/6 +
√

1/6) and
variance 1

2
. These will maintain the first three moments of the empirical distribution of residuals. Mammen

(1993) weights are alternative discrete weights defined as:

ωg =

{
(1−

√
5)/2 with probability 1+

√
5

2
√

5
,

1− (1−
√

5)/2 with probability 1− 1+
√

5

2
√

5
.
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for convenience:  y1,g = y2,gθ + xgγ + ug

y2,g = zgΠz + xgΠx + vg

for g = 1, . . . , G.

We assume that θ = 0 is scalar, and set Π′z = (cz, 0, . . . , 0)′, so that only the first instrument

is relevant. The included instruments are xg = [ιg εng ], where ιg is a ng×1 vector of ones,

vec(εg) ∼ N(0, Ing×(kx−1)
), and γ = Πx = (1, . . . , 1)′. The excluded instrument zg is set

as zg = ιngd
′
g + ϑg, where dg is a kz × 1 vector and ϑg is a ng × kz matrix. Both dg

and ϑg are sampled from independent multivariate standard normal distributions and

adjusted such that
∑G

g=1 ng
(
dg − d

)′ (
dg − d

)
= (1− λ)nIkz , where d = 1

G

∑G
g=1 dg,

and
(∑G

g=1 ϑ
′
ngϑng

)
= λ nIkz , with 1

ng
ι′gϑg = 0, 1

n

∑G
g=1 ι

′
gϑg = 0, and 0 ≤ λ ≤ 1.

These adjustments allow us to have n−1Z′MXZ = Ikz , where n is the total number of

observations. If λ = 0, the excluded instruments are the same within groups. We keep

the instruments W = [Z : X] fixed in all simulations.

The cluster-robust first-stage F-statistic for testing H0 : Πz = 0 defined in equation

(15) is asymptotically distributed as

n
Π′z

[
Var∞

(
Π̂z

)]−1
Πz

kz︸ ︷︷ ︸
µkz

+ F (kz,+∞),

where Var∞(Π̂z) = limn→+∞
1
nE[Z′MXVV′MXZ] and F (kz,+∞) represents the asymp-

totic F-distribution. If the residulas are non-spherical, then the parameter µkz can be

interpreted as the “concentration parameter” divided by the number of exogenous in-

struments. Since Πz = (πz, 0, ..., 0), the noncentrality parameter becomes:

µkz = n
c2
z

kz

[
Var∞

(
Π̂z

)]−1

11
, (16)

where
[
Var∞(Π̂z)

]−1

11
indicates the first diagonal entry of

[
Var∞(Π̂z)

]−1
. We fix the value

for cz as:

cz =

√√√√ kz[
Var∞

(
Π̂z

)]−1

11

µkz .
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We replace Var∞(Π̂z) in Equation 16 by 1
nZ′MXE[VV′|W] MXZ, where E[VV′ W|] is

explained below. We show in Appendix D that, under our dgp, µkz is closely related to

µ2 parameter of Olea and Pflueger (2013) which captures the bias of the TSLS.10

We generate errors of the model as:

 ug =
(
ucg + uig

)
|z11,g|κ

vg =
(
ρucg + %uig

)
|z11,g|κ +

(
1− ρ2

) 1
2 vcg +

(
1− %2

) 1
2 vig

for g = 1, . . . , G,

where
(
ucg,v

c
g

)
=
√
φ (ε1,g, ε2,g) ⊗ ιg,

(
uig,v

i
g

)
=
√

1− φ(ψ1,g,ψ2,g), εg = (ε1,g, ε2,g) ∼

N (0, I2), ψg = (ψ′1,g,ψ
′
2,g)
′ ∼ N(0,I2ng), and εg and ψg are independent. The parame-

ters ρ and % are scalars that capture the intra-cluster and the idiosyncratic correlations,

respectively, and z11,g is a scalar that corresponds to the first element of zg matrix. The

parameter κ depicts the degree of heterogeneity in the model. When κ = 0, the residuals

are akin to the random-effects panel-data model. The scalars φ and ϕ are weights for the

cluster and idiosyncratic components of the variance, which satisfy 0 ≤ φ, ϕ ≤ 1 and

φ+ ϕ = 1. Therefore, the joint distribution of
(
u′g,vg

′)′ is approximately:

 ug

vg

 ∼ N
0,

 Wg + Wg ρWg + %Wg

Wg + Wg


 .

where Wg = φ ιgι
′
g (z11,g)

2κ, and Wg = ϕIng (z11,g)
2κ. Therefore, we find E[VV′|W] =

W+W, where W = diag({Wg}Gg=1) and W = diag(
{
Wg

}G
g=1

). Due to the normalization,

E[(z11,g)
2] ≈ 1 by construction. Moreover, assuming that the number of observations

per cluster is the same (ng = n̄ for all g, which implies that n = n̄ × G), the asymptotic

variance Var∞

(
Π̂z

)
simplifies to

Var∞

(
Π̂z

)
= Ikz (φn̄ (1− λ) + ϕ) ,

and the Nagar (1959) approximation for computing the bias of the TSLS is:

E
[
θ̂IV − θ

∣∣∣W]
≈ (kz − 2)

(
nc2

z

)−1
(φn̄ (1− λ) ρ+ ϕ%) .11 (17)

10The bias of TLS is derived in Appendix C.
11See derivation in Appendix C.
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If φ = ϕ, it is clear from equation (17) that the within-cluster correlation ρ counts for

n̄ times more than the correlation of the idiosyncratic term % for the bias of the two-

stage least squares (TSLS) estimator. By setting ρ = %, and using the concentration

parameter divided by the number of exogenous instruments as defined in equation (16),

the approximate bias of the IV estimator can be rewritten as

E
[
θ̂IV − θ

∣∣∣W]
≈ (kz − 2)

kz
(µkz)

−1 ρ.

This is similar to the bias for θ̂IV derived in Bun and de Haan (2010).

Simulation results

Our results are based on 10,000 Monte Carlo experiments. In the experiments, we set

(kx, kz) = (2, 5), λ = 0.1, φ = ϕ = 0.5, and ρ = %. We investigate the cases where µkz =

0.1, 1, or 9, indicating very weak, weak, or strong instruments, respectively. For each µkz ,

we report also report µhkz = Π′z(ZMXZ)Πz
kz

, which is the standard concentration parameter

divided by kz . We choose κ from {0, 1, 2}, meaning no heterogeneity, heterogeneity and

strong heterogeneity, respectively. We set the endogeneity degree as ρ = 0.20, 0.95.

Finally, we consider cases where the number of observations per cluster are 20, or the

number of observations differs across cluster but average approximately 20 per cluster.

For the latter case of nonidentical cluster size, we first set the total number of clusters G,

and then choose the number of observations for each cluster from {16, 17, . . . , 25}. The

number of clusters with different sample sizes is equal. For example, when G = 40,

we have four clusters with 16, 17, and up to 25 observations each. To save space, we

only report results for the case where the number of observations differs across clusters.

For the same reason, we do not report results of the SE-neff bootstrap ΛKLM-test either

because the results are very close to the ones obtained from ME-neff bootstrap.12

In our experiments, we use 199 and 499 bootstrap replications for size and power

results, respectively. In repeated Monte Carlo experiments, the sampling error from

a small number of bootstrap replications should cancel out. In practice, at least 999

replications should be used.

12The full set of results are available upon request with the authors.
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Size results

Tables 2A and 2B contain the rejection rates for the asymptotic tests with their respective

bootstrap counterparts for µkz = 1 and 9, withG = 20 clusters and different heterogeneity

levels (κ), instruments strengthes (µkz ) and endogeneity degrees (ρ). The significance

level for the tests is 5%.

[Insert Table 2A here]

[Insert Table 2B here]

The rejections rates of the asymptotic Wald test differ considerably from the nominal

level even with strong instruments (µkz = 9), and this difference is increasing in the

degree of endogeneity (ρ) and residual heterogeneity (κ). The bootstrap Wald tests also

have rejection rates far from the nominal size even when the instruments are strong.

Nevertheless, the performance of the Wald ME-eff bootstrap, which imposes the null

H0 : θ = θ0 when generating the bootstrap samples, is superior to the Wald ME-IV

bootstrap, which does not impose the null. All the asymptotic weak instrument tests

are oversized when residuals heteroskedasticity is at κ = 0, or 1, and the ΛAR-test is

undersized under strong heteroskedasticy (κ = 2); however, their rejections rates are

closer to the nominal level than are those of the Wald tests. Except for the EE bootstrap

with multinomial weights, which are severely undersized in all scenarios, the remaining

proposed bootstraps present rejection rates closer to the nominal level. The SE and ME

bootstraps outperforms the EE bootstraps, specially when the degree of heterogeneity is

high, which is similar to the Kline and Santos (2012) results. The SE-neff bootstrap for

the ΛAR and ΛCLR-tests and the ME-neff bootstrap for the ΛKLM-test with Rademacher

(R) weights are the bootstrap tests with rejection rates closer to the nominal level in

almost all cases. In particular, they outperform the remaining bootstrap procedures when

heteroskedascity is very strong (κ = 2). The DM bootstrap tests performs well under

homoskedastic residuals (κ = 0). In the presence of heteroskedastic residuals, however,

their performance worsens with the distortion increasing with heteregeneity degree. This

results is not surprising since the number of within cluster observations is high vis a vis

the number of clusters.
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The asymptotic cluster robust first-stage F-test overrejects the weakness of the instru-

ments, and this overrjection can be high-above 84% when the concentration parameter is

small. On the other hand, the effective F-test underrejects the same hypothesis, which is

an expected result since we are using a conservative version of the test. The bootstrapped

F and effective F-tests present, respectively, lower and higher rejection rates compared

to their asymptotic counterparts. Interestingly, the SE-1st F- and effective F-tests give

similar rejection rates under Rademacher weights.

In Tables 3A and 3B, we study the performance of the tests when the number of

clusters increases, but the number of observations within the clusters remains constant.

The results are based on the dgp using heteroskedastic errors (κ = 1) with endogenity

degree at ρ = 0.95.

[Insert Table 3A here]

[Insert Table 3B here]

Even even when the instruments are strong (µkz = 9), the asymptotic and bootstrap

Wald test remains oversized in all experiments, but with rejection rates approaching the

nominal size as the number of clustersG increases. The asymptotic weak instrument tests

rejection probabilities also approach the nominal level as the sample size increases. The

differences between the weak instrument tests rejection probabilities and nominal level

are smaller compared to difference obtained from the Wald test. When the instruments

are weak and strong, the weak instruments bootstrap tests also converge to the nominal

level, although their convergence is not monotonic; however, when the instruments are

very weak (µkz = 0.1) only the bootstrap ΛAR test has rejection probabilities close to nom-

inal size. As expected, the DM bootstrap AR-test rejection rates approach the nominal

size as the number of clusters increases, but the convergence is slower when residuals are

highly heteroskedastic (κ = 2). The EE bootstrap tests with multinomial weights remain

severely undersized and slowly converging to the nominal size. Finally, the asymptotic

cluster robust first-stage F- and effective F-tests have different rejection probabilities for

testing H0 : Πz = 0. Remarkably, the bootstrap SE-1st for F- and effective F-tests give

similar rejection rates.
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Power comparison

Next, we compare power across the alternative bootstrap tests, using the same dgp as

in Tables 2A and 2B. The bootstrap results based on gamma weights are similar to those

obtained with Rademacher weights, therefore we only report the later. The power curves

of the bootstrap ΛAR- and ΛCLR-tests are very similar for SE-in and SE-neff bootstraps .

Therefore, only the SE-in results are reported. The same for ME-eff and ME-neff bootstrap

ΛKLM-tests, and, thence, only the power curves of ME-neff are reported.

[Insert Figure 1 here]

[Insert Figure 2 here]

Figures 1 and 2 reveal the great size distortion of the asymptotic tests and of the Wald

bootstrap tests, although the distortion is lower when the concentration parameter is

higher. The figures also reveal that the asymptotic ΛAR, ΛKLM, ΛCLR tests are not consis-

tent when instruments are weak (µkz = 1), as expected. Surprisingly, even the ΛAR-test

with strong instruments (µkz = 9) are also not consistent with small number of clusters.

For the ΛAR, and ΛCLR cases, the SE-in bootstraps power dominate the EE bootstraps, and

the difference is more pronounce when endogeneity is high (ρ = 0.95). In the ΛKLM case,

the SE-in bootstrap test also power dominates the other bootstraps methods. There is

no clear evidence if the EE method power dominates the ME-in and ME-neff bootstraps,

but the ME bootstrap ΛKLM-tests, however, present better size performance than the EE

bootstrap ΛKLM-test.

The simulation results suggest that SE bootstrap methods have better power perfo-

mance than the other bootstrap methods, and their performance in terms of size is at least

as good as the other bootstraps methods.

5 Empirical Applications

We now use our bootstrap methods in two empirical applications that fit system (1). We

construct confidence regions for the structural parameter of interest by inverting the boot-

strap tests. The 1 − α confidence set is formed by the points in the parameter space that
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do not reject the null hypothesis at significance level α. We use 1999 bootstrap samples

to compute the bootstrap p-values. In both empirical applications, the unboundedness

of the confidence sets prevents us from using less intensive computational methods than

the ones suggested in Davidson and MacKinnon (2010).

“Economic Shocks and Civil Conflict: An Instrumental Variables Approach”

Miguel et al. (2004) investigate the relationship between economic conditions and civil

war in sub-Saharan Africa. The authors are interested in how the deterioration of the

economic environment affects the probability of a civil conflict. The endogeneity problem

arises from several channels. One channel is the government institution quality, which

is not observed by the econometricians and drives both economic growth and the prob-

ability of civil wars. As an instrument for income growth they use variation in rainfalls.

This choice is motivated by the fact that those economies rely on subsistence agriculture.

Their data consists of an unbalanced panel of 41 African countries from 1981 to 1999, with

743 total observations, averaging 18.6 observations per country. The structural equation,

which captures the impact of economic fluctuations on civil conflict, is:

Ci,t = ∆GDPi,tθ1 + ∆GDPi,t−1θ2 +Xi,tγ + ui,t, (18)

where Ci,t is an indicator variable equal to one if there is a civil conflict with at least of

25 battle deaths per year and zero otherwise, ∆GDPi,t is the annual growth rate, Xi,t is a

set of control variables including country effects and country-specific time trends. They

consider a linear probability model and estimate (18) by TSLS with current and lagged

rainfall growth as instruments. Using country as the cluster unit allows them to treat

the errors within each country as serially correlated; however, they treat each country as

independent units.

In Table 4, we reproduce the same estimates of the Table 4 columns (5) and (6), page

739 obtained by Miguel et al. (2004). We found that the negative shocks on the economy

raise the probability of civil conflict, as expected by the theory.

[Insert Table 4 here]
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We report the cluster-robust F-tests, which show that the exogenous instruments both

∆GDPi,t and ∆GDPi,t−1are statistically different from 0 at the 5% significance level.

Nevertheless, the F-tests are below the Staiger and Stock (1997) rule-of-thumb of 10,

and below the critical values in Table 1 in Olea and Pflueger (2013), suggesting that the

instruments may be weak. The rank statistic of Kleibergen and Paap (2006), however,

points strongly to the joint significance of the instruments.

We examine the above results by comparing the Wald test to the ΛAR-test confidence

regions, since the model is just identified. Figures 3A and 3B show the confidence regions

for θ = (θ1, θ2) derived from the original models (5) and (6) in Miguel et al. (2004) page

739, respectively. The asymptotic confidence regions are constructed from the inversion

of the asymptotic Wald and ΛAR-tests, while the bootstrap confidence regions are ob-

tained from the Wald ME-eff and ΛAR SE-neff bootstrap tests with Rademacher weights.13

[Insert Figure 3A here]

[Insert Figure 3B here]

The asymptotic Wald confidence regions are elliptic and indicate a positive correlation

among the estimated structural parameters. The Wald bootstrap confidence regions are

very different from their asymptotic ones. Zhan (2010) establishes that this difference

between the asymptotic and bootstrap confidence regions is not surprising if instruments

are weak. Both the asymptotic ΛAR and ΛAR SE-neff bootstrap confidence regions are

non-convex and unbounded, very different from the bounded asymptotic Wald confi-

dence set. Therefore, even though the rank-test suggests strong correlation between

instruments and endogenous variables, the ΛAR and ΛAR SE-neff bootstrap confidence

regions points to weak instrument presence.

Interestingly, in Figure 3A the effect of economic fluctuations on civil war conflict

is statistically insignificant at 10% level according the Wald asymptotic test. At the same

significant level, however, this hypothesis is rejected by both ΛAR asymptotic and SE-neff

bootstrap tests. The same is true in Figure 3B at 5% significant level.

13The results are similar with gamma weights.
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“The Colonial Origins of Comparative Development: An Empirical Investiga-

tion”

The seminal article of Acemoglu et al. (2001) shows how institutions, as measured by

the protection of risk expropriation, affect economic performance. Capturing this ef-

fect is difficult because economic growth also shapes institutions. Moreover, there are

potential omitted variables that influence both institutions and economic performance.

The authors argue that the mortality rates faced by Europeans affect their willingness to

establish settlements and choice of colonization strategy. Places where mortality rates

are high are likely to have “extractive” institutions, whereas healthy places are prone to

receive better economic and political institutions. Therefore, the mortality rate would be

a good instrument for the institution variable. Their proposed regression model is the

following two stage model:

 yi,g = ri,gθ + xi,gγ + ui,g

ri,g = mi,gπm + xi,gπx + ui,g

where y is the log of GDP per capita in 1995, r is the protection of risk appropriation,

and m is log settler mortality. Acemoglu et al. (2001) consider several specifications in

which x could include latitude, continent dummies, percentage of European descent in

1975, and malaria, measure by the 1994 Falciparum malaria index. The index i refers to

colonial country, and the index g refers to countries which share the same mortality rates.

For example, due to the difficulty of obtaining historical data, several Latin American

countries are assigned the same mortality rates. In Africa, the mortality rate of a country

are inferred from the mortality rates of a neighboring country. Therefore, as pointed

by Albouy (2012), the errors of the regression specification should be clustered and not

treated an independent as originally done in Acemoglu et al. (2001).

Albouy (2012) also raises other criticism of Acemoglu et al. (2001) concerning mea-

surement of the mortality rate. In particular, he argues that mortality rates during peace-

time and “campaign” episodes are not the same. He also argues that some data for

West and Central African countries are unreliable. By adding a campaign dummy and

discarding contested observations, he finds that, because of weak instruments, the effect
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of institutions on growth becomes less clear. Acemoglu et al. (2012) rebuff each of Albouy

(2012) criticism in the same issue of the American Economic Review.14 Since the economet-

ric investigation of Acemoglu et al. (2012) and Albouy (2012) are based on samples with

at most 62 observations and 35 clusters, we revisited their findings by comparing their

asymptotic methods with the bootstrapped methods we propose.

Tables 5A and 5B contain the confidence intervals for some of the specifications in

Acemoglu et al. (2012) together with bootstrapped p-values of the first-stage F- and ef-

fective F-tests. The AR-ARJ refers to AR the confidence intervals obtained by Acemoglu

et al. (2012).15 The remaining confidence intervals are the methods discussed in previous

sections.

[Insert Table 5A here]

[Insert Table 5B here]

In the line with the previous empirical example, the Wald ME-eff bootstrap confidence

intervals are larger than the Wald asymptotic confidence intervals in several cases, as

depicted on Column (3), which indicate weak instruments. The AR-ARJ confidence inter-

vals have in general a smaller range when compared with the ΛAR confidence intervals.

In the majority of the cases, the ΛAR bootstrap confidence intervals have a larger range

compared to the asymptotic ones. Nevertheless, the ΛAR bootstraps confidence intervals

still suggest positive the effect of institutions on growth in the majory of cases. Only in

very few cases, for example, as the model that includes continent dummies and latitude

as explanatory variables, that the SE-neff bootstrap confidence intervals indicates that

14The confidence intervals for θ based on the clustered AR tests in Albouy (2012) and Acemoglu et al.
(2012) are different, although they use the same regression specification, data and software package. The
reason is that Albouy (2012) wrote his own code taking the advantage of the built-in functions of Stata while
Acemoglu et al. (2012) use the Stata package rivtest developed by Finlay and Magnusson (2009) which
compute the minimum distance version of the AR-test. The algorithms have different estimators of the
covariance matrix Ω̂ (θ0), which, due to small sample size, results in very different confidence sets. That is
the reason why Acemoglu et al. (2012) could not match Albouy (2012) Albouy’s (2012) results as mentioned
on footnote 28 of their paper.

15We use the weakiv package developed by Finlay et al. (2013) to compute the AR-AJR confidence
intervals. The weakiv package, which incorporated the rivtest, has the cluster correction variance
term G

(G−1)
(n−1)

(n−kw)
which is in the default of the Stata cluster routine to compute the variance matrix. This

correction makes the intervals approximately 0.01 larger than the ones reported in Acemoglu et al. (2012).
The correction term is also used when computing the AR and AR bootstrapped tests.
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the institutional effect on growth is statistically insignificant. We also note that the length

of the bootstrap ΛAR SE confidence intervals of are smaller than the ΛAR EE bootstrap

ones in most cases, as suggested by the power curve simulations. For the case of the

F and efficient F statistics, their bootstrap p-values are very close to each other with the

asymptotic F and effective F p-values are higher and lower than their respective bootstrap

counterparts, as also indicated by the Monte Carlo size simulations.

Albouy (2012) discards countries with conjectured mortality rate, which reduces the

sample to only 28 countries. Acemoglu et al. (2012) argues that the results using this

small sample are mainly driven by Gambia, which is an outlier. In Tables 6A and 6B

repeat a similar exercise as the previous tables using Albouy (2012) preferred sample

of 28 countries, and with the same sample without Gambia. By reducing the sample, the

cluster dimension is lost; however, our proposed methods remains valid in the individual

heteroskedastic case. We also include the DM bootstrap confidence intervals which are

valid in the presence of heteroskedastic errors.

[Insert Table 6A here]

[Insert Table 6B here]

We find that using Albouy’s preferred sample, the ΛAR asymptotic and bootstrap

confidence intervals, but not the AR-AJR, cover the entire real line in all specifications

except the one with no covariates. By excluding Gambia, the confidence intervals become

smaller; however, in some specifications, we cannot ruled out that the institutional effect

is not statistically significant. For the remaining specifications, the bootstrap confidence

intervals are generally larger then the asymptotic ones, specially the DM bootstrap, sug-

gesting that a potential smaller effect of institutions on economic performance in com-

parison to Acemoglu et al. (2012).

6 Conclusion

We propose bootstrap methods for Wald, weak-instrument-robust, F- and effective F-

tests in the linear IV framework with clustered residuals. Our simulations show that
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asymptotic tests are size distorted even when instruments are strong and the sample size

is relatively large. The same simulations shows that even with small sample size, resid-

ual bootstraps of weak-instrument-robust tests present rejection probabilities close to

nominal size. From all the proposed bootstrap methods for the weak-instrument-robust

tests, the single-equation residual bootstrap power dominates the other methods. We

also find that the single-equation residual bootstrap for F- and effective F-tests are very

close to each other, and their asymptotic tests over- and underreject the null hypothesis,

respectively.

We use the proposed methods in two empirical applications: the impact of economy

on civil conflits of Miguel et al. (2004), and the study of how institutions affect economic

growth discussed by Albouy (2012) and Acemoglu et al. (2012). In the first application,

the Wald asymptotic and bootstrap confidence regions are very different. The AR asymp-

totic and bootstrap confidence regions are larger than their Wald counterpart, and they

indicate no evidence that a bad economic performance affects the probability starting

a civil conflict in sub-saharan countries. In the second application, although the AR

single-equation residual bootstrap confidence regions are larger than the AR asymptotic

confidence region, the majority of the replication results support the claims in Acemoglu

et al. (2012).
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A Cluster variance-covariance matrix
Define hg (θ0) =

∑ng
i=1 hi,g (θ0) = w′geg (θ0) with hi,g = w′i,gei,g (θ0), and qg =

∑ng
i=1 qi,g =

(Ip ⊗ w′g)vg with qi,g = (Ip ⊗ w′i,g)vi,g, where wg = (zg : xg), vg = vec(y2,g − wgΠw),

eg = Yg (θ0)−wgδw. Let us partition Ξ (θ0), the variance matrix in equation (9) as Ξ (θ0) =

[Ξhh (θ0) ,Ξhq (θ0) : Ξqh (θ0) ,Ξqq (θ0)]. Each component of Ξ (θ0) is estimated as:

Ξds (θ0) =
1

n

G∑
g=1

(
dg (θ0)− ngd (θ0)

)
(sg (θ0)− ngsg (θ0))′ ,

where dg (θ0) = hg (θ0) or qg (θ0) with d (θ0) = 1
n

∑G
g=1 dg (θ0), and sg (θ0) = hg (θ0) or

qg (θ0) with s (θ0) = 1
n

∑G
g=1 sg (θ0). For computing the variance of the weak instrument

tests in Section 2, we replace (eg (θ0) ,vg) by (ég (θ0) , v̂g) = (Yg (θ0) − wg δ́w (θ0) ,y2,g −

wgΠ̂w). In the case of the EE bootstrap, we use

h̃∗g (θ0) = ωgh̃
c
g (θ0) = ωg

w′gẽg (θ0)− ng
n

G∑
g=1

w′gẽg (θ0)


in place of hg (θ0). The remaining variance terms of the EE bootstrap are not computed

because we are conditioning on Π̃z (θ0). For the residual bootstrap cases the covariance

matrix is computed by substituting (eg (θ0) ,vg) by (e∗b,,g (θ0) ,v∗b,,g), in hg (θ0) and qg

equation defined above, where e∗b,g = Y∗g (θ0) − wgδ
∗
w (θ0), v∗b,g = y∗2,g (θ0) − wgΠ

∗
w (θ0),

and (δ∗w (θ0) ,Π∗w (θ0)) are the bootstrap estimates values.

B Derivation of the Lagrange multiplier estimator
The Kleibergen test is the Lagrange multiplier test derived from the following restricted

minimization problem under H0 : d (θ0) = 0:

min

πw, γ

s.t. d (θ0) = 0

1

2

δ̂w (θ0)−Πwd (θ0)−Hγ

π̂w − πw

′ [Ω̂ (θ0)
]−1δ̂w (θ0)−Πwd (θ0)−Hγ

π̂w − πw

 , (A-1)

where H= [ 0′ I′kx ]′ and the estimator Ω̂ (θ0) is defined as in equation (9). In the

following, we omit (θ0) from δw (θ0) and d(θ0) and Ω̂ (θ0) to facilitate the exposition.

From the FOC condition we obtain:

H′
(

Ω̂δwδw

)−1 (
δ̂w −Hγ̃ (θ0)

)
= 0, and Π̃w (θ0)

′
(

Ω̂δwδw

)−1 (
δ̂w −Hγ̃ (θ0)

)
= λ̃ (θ0) , (A-2)

from where we derive γ̃ (θ0) = [H′(Ω̂δwδw)−1H]−1H′(Ω̂δwδw)−1δ̂w, and λ̃ (θ0) = Π̃w (θ0)′

(Ω̂δwδw)−1 M(Ω̂δwδw )−1

H δ̂w, where M(Ω̂δwδw )−1

H = I−P(Ω̂δwδw )−1

H and P(Ω̂δwδw )−1

H =H [H′(Ω̂δwδw)−1
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H]−1 H′ (Ω̂δwδw)−1 is an oblique projection.16 Using the fact that (Ω̂δwδw)−1M(Ω̂δwδw )−1

H =

[(Ω̂δzδz)
−1, 0 : 0 , 0], further simplification allow us to write the Lagrange multiplier esti-

mator as λ̃ (θ0) = Π̃z (θ0)′ (Ω̂δzδz)
−1 δ̂z . An estimator of the variance of λ̃ (θ0) conditional

on Π̃z (θ0) is V̂ar(λ̃ (θ0)) = Π̃z (θ0)′ (Ω̂δzδz)
−1 Π̃z (θ0). Finally, we have that the estimator

for Πw derived from equation (A-2):

π̃w (θ0) = vec
(

Π̂w

)
− Ω̂πwδz

(
Ω̂δzδz

)−1
δ̂z .

The estimator of the variance of π̃ (θ0) is V̂ar (π̃ (θ0)) = Ω̂πwπw − Ω̂πwδz

(
Ω̂δzδz

)−1
Ω̂δzπw .

The Anderson and Rubin test is the Lagrange multiplier test derived from the follow-

ing restricted minimization problem:

min
δw,s.t. δz=0

1

2

(
δ̂w − δw

)′ [
Ω̂δwδw

]−1 (
δ̂w − δw

)
. (A-3)

From the FOC conditions with respect to δx and the Lagrange multiplier λ we find

λ̃AR (θ0) = (Ω̂δzδz)
−1δ̂z , and δ̃x (θ0) = δ̂x−Ω̂δxδz λ̃AR (θ0), which is the same as the minimum-

distance estimator for γ in equation (A-2).

C Bias of the cluster IV estimator for θ
In matrix notation, the cluster residual model in system (1) is y1 = y2θ + Xγ + u

y2 = ZΠz + XΠx + V
, E

 uu′ uv
¯
′

v
¯
u′ v

¯
v
¯
′

∣∣∣∣∣∣W
 =

 Σuu Σuv

Σvu Σvv

 ,

where, v
¯

= vec (V), Σuu = diag[
{

Σugug

}G
g=1

], Σuv = [Σuv1 ,. . .,Σuvp ]
′, with Σuvj = diag[

{Σvj,gug}Gg=1], for j = 1, . . . , p, and Σvjvm = diag
[{

Σvj,gvm,g

}G
g=1

]
, for j,m = 1, . . . , p. Let

n =
∑G

g=1 ng and assume that rank (Πz) = p. The TSLS estimator θ̂IV can be written as:

θ̂IV − θ =
(
y′2PMXZy2

)−1
y′2PMXZu =

(
I + Q−1∆

)−1
Q−1C, (A-4)

where Q = Π′zZ
′MXZΠz , ∆ = Π′zZ

′MXV + V′MXZΠz + V′PMXZV, and C =

Π′zZ
′MXu + V′PMXZu. We have Q−1 = n−1 × Op (1) and ∆ =

√
n × Op (1), which

implies that, as n −→ +∞,
(
I + Q−1∆

)−1
= Op (1). Using a Taylor expansion (see Nagar

(1959)) we derive
(
I + Q−1∆

)−1 ≈I−Q−1∆. Equation (A-4) can be simplified to:

θ̂IV − θ = Q−1
{
CVu−

(
∆V + ∆′V

)
Q−1Cu

}
+ H,

where CVu =V′PMXZu, ∆V = Π′zZ
′MXV, Cu =Π′zZ

′MXu, and H has terms related to

odd moments of the joint distribution of (u′,v
¯
′)′ and terms which are of small order.

16The oblique projection P(Ω̂δwδw )−1

H satisfies the properties H′(Ω̂δwδw )−1P(Ω̂δwδw )−1

H =H′(Ω̂δwδw )−1 and

P(Ω̂δwδw )−1

H H=H.
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Assuming that the first and third moments of the joint distribution are zeros,17 the bias

of the IV estimator is approximately:

E
[
θ̂IV − θ

]
≈ E

{
Q−1

[
V′PMXZΠ⊥z

u−∆VQ−1Cu

]}
,

where PMXZΠ⊥z
≡ PMXZ−PMXZΠz . The first element of V′ PMXZΠ⊥z

u is v′1PMXZΠ⊥z
u,

whose expectation is E[v′1PMXZΠ⊥z
u] = trace(PMXZΠ⊥z

Σuv1). So, E[V′PMXZΠ⊥z
u] =

[trace(PMXZΠ⊥z
Σuv1), . . ., trace(PMXZΠ⊥z

Σuvp)]
′. Partition Q−1 as Q−1 =[Q·1, . . . ,Q·p].

Therefore,
E
[
Q−1V

′PMXZΠ⊥z
u
]

=

p∑
j=1

trace
(

PMXZΠ⊥z
Σuvj

)
Q·j . (A-5)

To study E[Q−1∆VQ
−1

Cu], we rewrite ∆VQ−1Cu as vec(C′uQ−1∆′V) = Π′zZ
′MX(V⊗

u′)(Ip⊗MXZΠz) vec(Q−1). Since E(V ⊗ u′)=[Σv1u, . . . ,Σvpu], we have E[C′uQ−1∆′V] =∑p
j=1 Π′z Z′MX Σvju MXZΠzQ

·j , and, consequently,

E
[
Q−1∆VQ−1Cu

]
=

p∑
j=1

Q−1Π′zZ
′MXΣvjuMXZΠzQ

·j . (A-6)

Substituting Equations A-5 and A-6 we have:

E
[
θ̂IV − θ

]
≈

p∑
j=1

trace
(

PMXZΠ⊥z
Σuvj

)
IpQ·j −

p∑
j=1

Q−1Π′zZ
′MXΣvjuMXZΠzQ

·j . (A-7)

When p = 1, equation (A-7) simplifies to trace(PMXZΣuv)Q−1−2(Π′zZ
′MXΣuvMXZΠz)Q

−2,

which is the same as the bias derived by Bun and de Haan (2010).

Assuming that (Z′MXZ) = nIkz and Πz = ‖Πz‖Π0, we find:

E
[
θ̂IV − θ

]
≈ µ−2 trace (S12)

trace (S22)

{
1− 2

(Π′0S12Π0)

trace (S12)

}
where S12 = n−1Z′MXΣuvMXZ, S22 = n−1Z′MXΣvvMXZ, and µ2 = [trace (S22)]−1 n ‖Πz‖2

represents the concentration parameter for the case of non spherical errors derived by

Olea and Pflueger (2013) in Theorem 1. If the residuals are homoskedastic, then Σuvj =

τjIn, and, Equation A-7 is simplified to (kz − p− 1) Q−1τ where τ ′= [τ1, ..., τp].

Consider that the errors of the model are generated as ug = ιngυg + εg, and vec(vg) =[
νg ⊗ ιng

]
+ εg, for g = 1, . . . , G, where υg is scalar, and νg and εg are p× 1 and (ngp)× 1

vectors with (υg,νg)
′ ∼

√
φgN(0, [1, ρ′ : ρ], Ip), (εg, εg)

′ ∼ √ϕgN(0, [1,%′ : %,Ip]⊗Ing),

where ρ′ = [ρ1, . . . , ρp] and %′ = [%1, . . . , %p] are p× 1 vectors capturing the intra-cluster

effect and the idiosyncratic term correlations and the scalar φg, 1 ≥ φg ≥ 0. So the joint

distribution of
(
u′g, vec(vg)

′)′ is:

17If u, vec (V) follows a multivariate distribution, we can invoke Isselis’ or Wick’s theorem, which says
that the expected value of odd moments of a centered multivariate normal distribution are 0.
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 ug

vec(vg)

 ∼ N
0,

 Wg + Wg

(
ρ′ ⊗ Ing

)
Wg +

(
%′ ⊗ Ing

)
Wg

· Ip ⊗
(
Wg + Wg

)



where Wg = φg ιng ι
′
ng , Wg = (1− φg) Ing . We interpret φg and (1− φg) as the weights

due to the cluster and idiosyncratic effects in the correlation.

Under this assumption, Σuvj = diag{ ρjWg + %jWg}Gg=1 and Z′MXΣuvjMXZ =

Z′MX

(
ρjW+ %jW

)
MXZ, for j = 1, . . . , p, where W = diag {Wg}Gg=1, and W =

diag
{
Wg

}G
g=1

. Then, after further simplifications in equation (A-7), the bias of IV es-

timator turns out to be

E
[
θ̂IV − θ

]
≈
{

trace
[
PMXZΠ⊥z

W
]

Ip −Q−1Π′z
(
Z′MXWMXZ

)
Πz

}
Q−1ρ

+
{

trace
[
PMXZΠ⊥z

W
]

Ip −Q−1Π′z
(
Z′MXWMXZ

)
Πz

}
Q−1%

The first term captures the bias of the IV estimator due to the cluster effect while the

second term is function of the within cluster correlations.

Let us define Z and MXZ as Z =
[
d′1ι
′
n1

+ ϑ′1, . . . ,d
′
Gι
′
nG

+ ϑ′G
]′ and MXZ =[

z⊥′1 , . . . , z
⊥′
G

]
= [

(
d1 − d

)′
ι′n1

+
(
ϑ1 − ιn1ϑ

)′, . . ., (dG − d
)′
ι′nG +

(
ϑG − ιnGϑ

)′
]′ where

d =
(
n−1

∑G
g=1 ngdg

)
and ϑ =

(
n−1

∑G
g=1 ι

′
ngϑg

)
. We interpret dg and the part of

instruments which is common to all observations in cluster g, while that ϑg captures the

part which is idiosyncratic for each observation.

Define ϑg = n−1
g ι′ngϑg. If we further impose in the data generate process that ϑg =

ϑ = 0, φg = φ, ng = n̄ for all g, then we have Z′MXZ =n̄
∑G

g=1[
(
dg − d

)′ (
dg − d

)
+ϑ′gϑg],

Z′MXWMXZ= (1− φ) Z′MXZ, and Z′MXWMXZ=φn̄
(
Z′MXZ−

∑G
g=1 ϑ

′
gϑg

)
. When gen-

erating the data, we reescale the values of dg such that
∑G

g=1 ng
(
dg − d

)′ (
dg − d

)
=

(1− λ)nIkz and (
∑G

g=1 ϑ
′
gϑg) = λnIkz , so Z′MXZ = nIkz for 0 ≤ λ ≤ 1. In the

simulations, we set λ = 0.1. Then, the bias of TSLS becomes:

E
[
θ̂IV − θ

]
≈ φn̄ (1− λ) (kz − p− 1) Q−1ρ+ (1− φ) (kz − p− 1) Q−1%

≈ (kz − p− 1) Q−1 [φn̄ (1− λ)ρ+ (1− φ)%]

The last equation is the same as equation (17).
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D The concentration parameter

When p = 1, the cluster robust F-test for testing H0 : Π = 0 is F̂ = k−1
z Π̂′z[Ξ̂ΠzΠz ]

−1Π̂z ,

where Ξ̂ΠzΠz is the cluster robust variance estimator. Let ΞΠzΠz be the true (condi-

tional) variance of Π̂z . The above statistic can be asymptotically approximated by µkz +

F (kz,+∞) where µkz = Π′z [kzΞΠzΠz ]
−1 Πz , and F (kz,+∞) represents the F-distribution.

Since only the first instrument is validity, i.e. Πz = (cz, 0, ..., 0), the noncentrality parame-

ter becomes µkz = c2
zk
−1
z [ΞΠzΠz ]

−1
11 , where [ΞΠzΠz ]

−1
11 indicates the first diagonal entry of

[ΞΠzΠz ]
−1. In our simulation experiment, we set µkz = 0.1, 1 and 9 to indicate weak and

strong instruments, respectively. We fix cz as

cz =

√
kz

[ΞΠzΠz ]
−1
11

µkz

The noncentrality parameter derived above is closely related to the measure proposed

by Olea and Pflueger. Their test is

F̂eff =
y′2MXZ (Z′MXZ)−1 Z′MXy2

trace
(

Ŝ22

) ,

where Ŝ22 is an estimator of n−1E[Z′MXVV′MXZ], which is, under our assumptions

n−1ξ (φ, n̄, λ) Z′MXZ, where ξ (φ, n̄, λ) = φn̄ (1− λ) + (1− φ). The F̂eff statistic can be

approximated to

Π′z (Z′MXZ) Πz

ξ (φ, n̄, λ) trace (n−1Z′MXZ)
+

V′MXZ (Z′MXZ)−1 (Z′MXV)

ξ (φ, n̄, λ) trace (n−1Z′MXZ)

or, using the fact that ΞΠΠ = ξ (φ, n̄, λ) (Z′MXZ)−1 and n−1Z′MXZ =Ikz , the later term

becomes µkz+kz
−1V′MXZ [ΞΠzΠz ]

−1 (Z′MXV). The second term of the above expression

is asymptotically distributed as F (kz,+∞).

The effective degrees of freedom is defined as:

Keff ≡

[
trace

(
E[Z′MXVV′MXZ]

n

)]2

(1 + 2x)

trace
(

E[Z′MXVV′MXZ]
n

E[Z′MXVV′MXZ]
n

)
+ 2 trace

(
E[Z′MXVV′MXZ]

n

)
max eval

(
E[Z′MXVV′MXZ]

n

)
x

which, in our case, is simplified to

Keff ≡
[trace (ξ (φ, n̄, λ)nIkz)]

2 (1 + 2x)

trace
(

[ξ (φ, n̄, λ)]2 n2Ikz
)

+ 2 trace (ξ (φ, n̄, λ)nIkz) max eval (ξ (φ, n̄, λ)nIkz)x

or, (ξ(φ,n̄,λ)kz)2(1+2x)

(ξ(φ,n̄,λ))2kz+2(ξ(φ,n̄,λ))2kzx
= kz(1+2x)

(1+2x) = kz .
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Table 1: Different Bootstrap Methods for Cluster IV

Method Tests Weights Estimator for δw (θ0) fixed Π̃z (θ0)? H0 imposed?

Estimating Equations (EE) AR, KLM, CLR M, Γ, R δ̃w (θ0) Yes Yes

Residuals Single Equation

inefficient (SE-in) AR, KLM, CLR Γ, R δ́w (θ0) Yes Yes

new-efficient (SE-neff) AR, CLR Γ, R δ̃w (θ0) Yes Yes

First-stage (SE-1st) F, Feff Γ, R – Yes Yes (Πz = 0)

Residuals Multiple Equation

IV (ME-IV) Wald Γ, R – No No

inefficient (ME-in) AR, KLM Γ, R δ́w (θ0) No Yes

efficient (ME-eff) AR, KLM, Wald Γ, R δ́w (θ0) No Yes

new-efficient (ME-eff) KLM Γ, R δ̃w (θ0) No Yes

Davidson-MacKinnon (DM) AR, KLM Γ, R δ́w (θ0) No Yes

Pairs Wald, F M – – No

Notes: The weights M, Γ and R correspond to the multinomial, gamma, and Rademacher weights, respectively.
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Table 2A: Size (in percent) for testing H0 : θ = 0 against H1 : θ 6= 0 at the 5%
significance level, dgp with group-level random errors, 20 clusters with different
number of observations in each cluster

κ = 0 κ = 1 κ = 2
µkz = 1 µkz = 9 µkz = 1 µkz = 9 µkz = 1 µkz = 9
(9.96) (89.64) (24.17) (217.53) (39.11) (352.02)

Test ρ = 0.20 0.95 0.20 0.95 0.20 0.95 0.20 0.95 0.20 0.95 0.20 0.95
Wald Asymp. 13.68 61.09 17.94 25.04 30.44 55.25 41.53 40.88 43.75 79.94 52.33 53.67

ME-IV Γ 8.34 40.87 14.69 19.03 11.24 39.16 16.86 18.45 13.90 67.00 10.99 23.05
R 8.58 37.81 14.25 17.94 10.39 42.86 15.34 17.43 12.79 70.65 9.22 23.90

ME-eff Γ 4.06 21.79 5.15 10.57 7.05 25.51 7.07 10.70 9.56 55.87 4.97 21.11
R 4.37 14.00 4.14 6.47 6.91 22.53 5.41 8.47 12.06 56.49 6.77 25.22

Pairs 4.38 23.18 8.71 11.69 3.80 30.53 7.04 11.11 1.15 44.10 2.06 3.56

AR Asymp. 19.79 19.79 19.79 19.79 12.12 12.12 12.12 12.12 2.60 2.60 2.60 2.60
EE M 0.03 0.03 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Γ 7.37 7.37 7.37 7.37 3.57 3.57 3.57 3.57 0.54 0.54 0.54 0.54
R 4.95 4.95 4.95 4.95 2.67 2.67 2.67 2.67 0.45 0.45 0.45 0.45

SE-in Γ 7.41 7.41 7.41 7.41 5.35 5.35 5.35 5.35 1.48 1.48 1.48 1.48
R 5.23 5.23 5.23 5.23 4.14 4.14 4.14 4.14 1.30 1.30 1.30 1.30

SE-neff Γ 7.41 7.41 7.41 7.41 5.78 5.78 5.78 5.78 2.02 2.02 2.02 2.02
R 5.06 5.06 5.06 5.06 4.64 4.64 4.64 4.64 4.31 4.31 4.31 4.31

DM Γ 3.75 3.75 3.75 3.75 2.92 2.92 2.92 2.92 11.72 11.72 11.72 11.72
R 5.81 5.81 5.81 5.81 8.04 8.04 8.04 8.04 15.20 15.20 15.20 15.20

KLM Asymp. 16.44 21.39 15.71 16.36 13.60 15.12 12.73 12.62 4.83 6.90 4.75 4.96
EE M 0.17 0.33 0.12 0.20 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00

Γ 5.84 8.44 5.41 5.52 3.82 4.62 3.36 3.43 0.95 1.09 0.98 0.99
R 5.34 7.57 4.74 5.02 3.44 4.13 3.06 3.11 0.87 1.02 0.85 0.87

SE-in Γ 6.05 8.89 5.72 5.89 5.27 6.07 5.02 4.58 1.98 2.37 1.68 1.77
R 5.57 8.41 5.24 5.52 4.81 6.00 4.62 4.60 2.03 2.76 1.87 1.98

ME-in Γ 6.07 8.93 5.69 5.85 5.45 6.19 4.85 4.51 2.04 2.46 1.70 1.79
R 5.33 7.15 5.04 5.24 4.61 5.41 4.49 4.40 1.89 2.50 1.80 1.85

ME-eff Γ 5.90 9.00 5.53 5.88 5.33 6.12 4.87 4.54 2.01 2.48 1.68 1.79
R 5.29 6.75 5.09 5.14 4.64 5.31 4.54 4.45 1.83 2.26 1.80 1.87

ME-neff Γ 5.94 8.98 5.38 5.76 5.63 6.74 5.14 5.03 2.65 4.48 2.58 2.88
R 5.09 6.40 4.89 4.92 4.96 5.82 4.81 4.75 4.95 7.48 4.77 4.85

DM Γ 3.05 3.11 3.05 3.28 7.10 7.76 7.76 7.87 13.03 19.56 19.42 20.93
R 4.21 4.31 4.30 4.55 7.47 7.52 7.57 7.31 12.18 15.67 15.64 16.24

CLR Asymp. 17.06 21.73 15.80 16.33 13.56 15.14 12.70 12.52 4.77 6.54 4.68 4.92
EE M 0.09 0.27 0.11 0.18 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00

Γ 5.99 8.53 5.44 5.55 3.90 4.59 3.39 3.43 0.91 1.03 0.97 0.98
R 5.10 7.59 4.71 4.97 3.17 4.01 3.07 3.10 0.85 0.96 0.83 0.86

SE-in Γ 6.09 9.00 5.73 5.93 5.33 6.10 5.03 4.56 1.93 2.27 1.68 1.77
R 5.43 8.24 5.24 5.52 4.72 5.99 4.61 4.60 2.00 2.65 1.87 1.98

SE-neff Γ 5.93 8.78 5.52 5.79 5.69 6.74 5.16 4.96 2.62 4.04 2.49 2.79
R 5.08 7.96 5.02 5.28 5.11 6.67 5.03 4.97 4.97 7.61 4.76 5.26

(Continued).
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Table 2B: Size (in percent) for testing H0 : θ = 0 against H1 : θ 6= 0 at the 5%
significance level, dgp with group-level random errors, 20 clusters with different
number of observations in each cluster

κ = 0 κ = 1 κ = 2
µkz = 1 µkz = 9 µkz = 1 µkz = 9 µkz = 1 µkz = 9
(9.96) (89.64) (24.17) (217.53) (39.11) (352.02)

Test ρ = 0.20 0.95 0.20 0.95 0.20 0.95 0.20 0.95 0.20 0.95 0.20 0.95
F Asymp. 88.08 88.20 100.00 100.00 96.99 89.46 100.00 100.00 95.46 84.61 100.00 98.87

SE-1st Γ 25.80 26.70 93.07 93.09 50.04 48.81 99.37 94.43 58.43 31.60 98.75 75.51
R 16.25 16.92 83.67 83.93 35.21 45.88 97.02 90.89 47.55 36.54 96.49 75.71

Pairs 12.11 12.27 79.47 79.06 29.84 25.51 95.45 71.09 34.36 11.76 91.09 29.64

Eff. F Asymp. 0.74 0.81 53.55 53.67 5.32 25.35 97.35 91.45 17.46 28.24 98.30 70.55
SE-1st Γ 13.84 13.94 86.88 86.83 30.68 48.78 99.82 99.34 47.22 46.33 99.97 83.26

R 16.37 16.82 90.21 90.78 36.45 50.74 99.93 99.25 51.21 45.65 100.00 82.70

Notes: Authors’ calculation from 10,000 Monte Carlo simulations. For bootstrap methods, each experiment
consists of 199 bootstrap replications. The number in parenthesis is the concentration parameter divided by
kz assuming homoskedastic errors. The weights M, Γ and R correspond to the multinomial, gamma, and
Rademacher weights, respectively. Sample size is 410 observations.

Table 3A: Size (in percent) for testing H0 : θ = 0 against H1 : θ 6= 0 at the 5% significance
level, with strong heteroskedastic group-level random errors, ρ = 0.95, and different
number of observations in each cluster.

µkz = 0.1 µkz = 1 µkz = 9
(0.70) (2.42) (1.66) (2.16) (2.13) (7.05) (24.17) (16.59) (21.56) (21.34) (63.42) (217.53) (149.28) (194.06) (192.08)

Test G = 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160
Wald Asymp. 95.51 90.40 88.55 86.31 87.46 71.84 55.25 46.82 35.16 35.05 31.35 40.88 17.62 11.04 9.57

ME-IV Γ 84.18 81.55 72.83 69.55 69.94 48.69 39.16 30.19 21.01 19.12 15.05 18.45 10.46 8.18 7.63
R 83.58 82.20 73.79 70.33 70.66 48.76 42.86 28.02 18.81 17.63 11.96 17.43 7.90 6.31 6.68

ME-eff Γ 63.12 55.65 29.40 13.09 7.32 33.23 25.51 15.94 9.88 7.76 11.81 10.70 9.36 7.53 7.02
R 55.65 51.18 26.82 11.80 7.02 27.23 22.53 12.39 7.51 6.33 8.35 8.47 6.36 5.27 5.59

Pairs 61.07 66.80 63.96 63.54 65.33 26.08 30.53 19.14 15.43 14.32 5.97 11.11 6.52 6.17 6.87

AR Asymp. 46.00 12.12 7.66 5.28 4.28 46.00 12.12 7.66 5.28 4.28 46.00 12.12 7.66 5.28 4.28
EE M 0.00 0.00 0.02 0.19 0.65 0.00 0.00 0.02 0.19 0.65 0.00 0.00 0.02 0.19 0.65

Γ 4.33 3.57 6.03 5.89 5.72 4.33 3.57 6.03 5.89 5.72 4.33 3.57 6.03 5.89 5.72
R 1.96 2.67 4.64 4.77 4.67 1.96 2.67 4.64 4.77 4.67 1.96 2.67 4.64 4.77 4.67

SE-in Γ 6.06 5.35 6.39 5.84 5.43 6.06 5.35 6.39 5.84 5.43 6.06 5.35 6.39 5.84 5.43
R 5.33 4.14 5.06 4.87 4.68 5.33 4.14 5.06 4.87 4.68 5.33 4.14 5.06 4.87 4.68

SE-neff Γ 6.60 5.78 6.49 5.82 5.37 6.60 5.78 6.49 5.82 5.37 6.60 5.78 6.49 5.82 5.37
R 5.51 4.64 5.08 4.81 4.66 5.51 4.64 5.08 4.81 4.66 5.51 4.64 5.08 4.81 4.66

DM Γ 2.36 2.92 5.77 5.55 5.37 2.36 2.92 5.77 5.55 5.37 2.36 2.92 5.77 5.55 5.37
R 12.13 8.04 5.57 5.38 4.82 12.13 8.04 5.57 5.38 4.82 12.13 8.04 5.57 5.38 4.82

KLM Asymp. 54.47 23.14 16.33 10.15 7.68 42.62 15.12 10.77 7.28 5.96 33.18 12.62 9.41 6.88 5.72
EE M 0.00 0.00 0.20 0.80 2.24 0.00 0.01 0.08 0.40 1.61 0.00 0.01 0.08 0.31 1.54

Γ 7.10 7.49 10.65 8.21 6.70 5.42 4.62 6.53 5.64 5.30 4.12 3.43 5.36 5.10 5.01
R 3.77 6.79 10.10 7.99 6.71 2.81 4.13 6.07 5.65 5.11 2.15 3.11 5.11 4.98 4.92

SE-in Γ 10.51 10.32 10.52 7.71 6.48 7.88 6.07 6.57 5.45 5.07 5.98 4.58 5.26 4.91 4.77
R 10.75 9.46 10.51 7.91 6.77 7.76 6.00 6.21 5.47 5.04 6.13 4.60 5.29 4.90 4.81

ME-in Γ 10.37 10.12 10.82 7.91 6.44 7.90 6.19 6.46 5.52 5.23 6.20 4.51 5.44 4.94 4.87
R 9.68 8.20 8.99 7.35 6.27 7.42 5.41 5.72 5.09 4.90 5.98 4.40 5.12 4.84 4.86

ME-eff Γ 10.41 10.40 10.22 7.67 6.18 7.83 6.12 6.60 5.43 5.08 6.06 4.54 5.40 4.86 4.69
R 8.94 7.47 7.62 6.10 5.38 7.08 5.31 5.46 5.13 4.91 5.82 4.45 5.12 4.98 4.78

ME-neff Γ 10.28 11.05 10.30 7.66 6.22 8.15 6.74 6.52 5.47 5.07 6.27 5.03 5.33 4.96 4.61
R 8.15 8.23 7.70 6.12 5.34 6.67 5.82 5.56 5.06 4.95 5.42 4.75 5.14 4.98 4.85

DM Γ 3.94 7.05 7.44 7.18 6.43 8.61 7.76 7.57 6.70 5.83 10.01 7.87 7.57 6.58 5.57
R 5.64 7.42 6.33 6.57 5.91 7.23 7.52 5.83 5.65 5.10 7.87 7.31 5.54 5.44 4.97

CLR Asymp. 62.05 22.93 14.99 9.56 6.73 51.61 15.14 10.67 7.21 5.80 43.20 12.52 9.33 6.78 5.69
EE M 0.00 0.00 0.07 0.37 1.31 0.00 0.00 0.08 0.36 1.53 0.00 0.01 0.08 0.31 1.51

Γ 6.36 7.29 9.88 8.21 6.81 5.02 4.59 6.52 5.69 5.35 3.63 3.43 5.35 5.09 5.00
R 3.19 6.36 9.04 7.65 6.38 2.43 4.01 5.98 5.62 5.21 1.97 3.10 5.09 5.03 4.94

SE-in Γ 9.24 10.14 10.01 7.73 6.50 7.06 6.10 6.57 5.46 5.07 5.29 4.56 5.25 4.92 4.77
R 9.21 9.25 9.53 7.74 6.18 6.86 5.99 6.12 5.44 5.03 5.20 4.60 5.28 4.86 4.82

SE-eff Γ 8.86 10.80 9.97 7.80 6.50 7.49 6.74 6.54 5.42 5.07 5.64 4.96 5.39 4.89 4.81
R 7.91 10.19 9.42 7.73 6.15 6.39 6.67 6.19 5.41 5.04 4.84 4.97 5.18 4.92 4.76
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Table 3B: Size (in percent) for testing H0 : θ = 0 against H1 : θ 6= 0 at the 5% significance
level, with strong heteroskedastic group-level random errors, ρ = 0.95, and different
number of observations in each cluster.

µkz = 0.1 µkz = 1 µkz = 9
(0.70) (2.42) (1.66) (2.16) (2.13) (7.05) (24.17) (16.59) (21.56) (21.34) (63.42) (217.53) (149.28) (194.06) (192.08)

Test G = 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160
F Asymp. 92.72 79.61 32.30 19.04 13.08 97.17 89.46 68.82 62.06 51.74 99.98 99.99 99.97 99.98 99.99

SE-1st Γ 7.92 12.44 12.77 12.69 10.64 16.85 48.81 46.38 53.15 46.60 60.27 94.43 99.55 99.92 99.98
R 5.98 10.01 7.76 8.42 8.18 13.22 45.88 38.19 44.98 40.86 48.46 90.89 98.58 99.89 99.97

Pairs 0.23 5.20 2.38 2.72 4.09 0.86 25.51 13.94 25.16 28.68 5.52 71.09 77.58 97.55 99.74

Eff. F Asymp. 13.91 2.57 0.01 0.00 0.00 28.34 25.35 0.75 0.04 0.03 85.71 91.45 58.86 61.75 48.79
SE-1st Γ 9.28 10.50 12.62 11.91 10.42 19.16 48.78 47.64 53.95 50.97 73.15 99.34 97.64 99.93 99.99

R 7.23 11.67 9.12 9.90 9.23 16.03 50.74 43.21 50.62 48.41 68.12 99.25 97.02 99.83 99.98

Notes: Authors’ calculation from 10,000 Monte Carlo simulations. For bootstrap methods, each experiment
consists of 199 bootstrap replications. The number in parenthesis is the concentration parameter divided by
kz assuming homoskedastic errors. The weights M, Γ and R correspond to the multinomial, gamma, and
Rademacher weights, respectively. The sample sizes are 205, 410, 820, 1640 are 3280 observations for G = 20,
40, 80, and 160, respectively.

Table 4: Application: Economic Growth and Civil Conflict

Dependent Variable: Civil Conflict ≥ 25

(1) (2)

∆GDPi,t −0.412 −1.132
(1.479) (1.403)

∆GDPi,t−1 −2.249∗∗ −2.547∗∗

(1.074) (1.103)

1st F -test (cluster) ∆GDPi,t 5.739 4.491
p-value 0.003 0.011

1st F -test (cluster) ∆GDPi,t−1 3.935 3.642
p-value 0.020 0.026

Kleibergen and Paap (2006) rank-test 15.287 16.195
p-value 0.000 0.000

Included instruments 49 82
Notes: Number of observations are 743 with 41 unbalanced clusters. Standard errors, corrected
for arbitrary forms of heteroskedasticity and autocorrelation, are in parenthesis. The excluded
instruments are growth in rainfall at t and growth in rainfall at t − 1. In model (1) the included
exogenous variables are country specific time trends, log of the GDP per capita in 1979, log of the
proportion that a country is mountainous, log of the nation population at t − 1, an indicator for
the countries which are oil-exporters, ethnolinguistic fractionization, religious fractionization, and
measures of democracy. In model (2) the included exogenous variables are country specific dummies
and country specific trends.
∗∗ Significant different from zero at 5% significant level.
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Table 5A: 95% Confidence Intervals, Wald, AR, and Bootstrapped Tests

Original
AJR Series

Original
AJR series,
capped at

250

Original
AJR Series,

Albouy
campaign
dummy

Original
AJR series,
capped at

250, Albouy
campaign
dummy

Original
AJR series,

without
contested

observations
in West and

Central
Africa

Original
AJR series,

without
contested

observations
in West and

Central
Africa,

mortality
capped at

250
(1) (2) (3) (4) (5) (6)

No covariates
Wald-asymp [0.53, 1.32] [0.55, 1.09] [0.34, 1.84] [0.43, 1.30] [0.50, 1.24] [0.51, 1.03]
Wald-boot ME-eff [0.51, 1.64] [0.56, 1.21] [0.35, 3.31] [0.47, 1.53] [0.47, 1.55] [0.53, 1.15]

AR AJR [0.67, 1.73] [0.61, 1.20] [0.64, 3.96] [0.52, 1.55] [0.62, 1.62] [0.57, 1.12]
AR [0.65, 2.16] [0.61, 1.49] [0.63, 5.16] [0.55, 2.17] [0.58, 2.09] [0.54, 1.40]

AR-boot EE [0.65, 2.20] [0.61, 1.53] [0.63, 5.29] [0.55, 2.26] [0.59, 2.35] [0.54, 1.47]
AR-boot SE-neff [0.64, 2.10] [0.61, 1.49] [0.61, 6.84] [0.53, 2.24] [0.60, 2.04] [0.56, 1.35]
F-stat p-value 0.000 0.000 0.014 0.000 0.000 0.000
F-boot p-value 0.014 0.001 0.053 0.004 0.015 0.001
Eff. F-boot p-value 0.000 0.001 0.046 0.003 0.014 0.001

With latitude
Wald-asymp [0.44, 1.48] [0.50, 1.09] [0.16, 2.15] [0.34, 1.36] [0.43, 1.35] [0.47, 1.04]
Wald-boot ME-eff [0.45, 2.35] [0.48, 1.25] [−7.00,−0.13] ∪

[0.33, 6.19]
[0.35, 1.74] [0.42, 2.02] [0.45, 1.20]

AR AJR [0.64, 2.50] [0.55, 1.20] [0.61, 34.78] [0.41, 1.71] [0.59, 2.08] [0.51, 1.14]
AR [0.61, 7.43] [0.53, 1.77] −∞,−7.10] ∪

[0.59,+∞
[0.45, 3.48] [0.54, 4.77] [0.46, 1.64]

AR-boot EE [0.61, 4.99] [0.52, 1.71] [0.57,+∞ [0.41, 3.05] [0.57, 6.13] [0.46, 1.78]
AR-boot SE-neff [0.61, 5.55] [0.49, 1.61] −∞,−4.26] ∪

[0.52,+∞
[0.16, 3.66] [0.57, 4.19] [0.47, 1.55]

F-stat p-value 0.006 0.000 0.053 0.002 0.004 0.000
F-boot p-value 0.057 0.006 0.142 0.024 0.061 0.007
Eff. F-boot p-value 0.052 0.005 0.130 0.020 0.058 0.006

With continent
dummies and
latitude
Wald-asymp [0.03, 2.12] [0.33, 1.28] [−0.25, 2.62] [0.24, 1.43] [0.17, 1.82] [0.37, 1.30]
Wald-boot ME-eff [−6.57,−0.10] ∪

[0.30, 6.42]
[0.24, 1.40] [−11.69, 11.65] [−0.05, 2.01] [0.32, 3.79] [0.30, 1.44]

AR AJR −∞,−4.74] ∪
[0.46,+∞

[0.31, 1.53] −∞,−1.16] ∪
[0.37,+∞

[0.13, 2.21] [0.47, 20.55] [0.41, 1.56]

AR −∞,−1.71] ∪
[0.40,+∞

[0.17, 1.81] −∞,−0.79] ∪
[0.43,+∞

[0.09, 7.74] [0.41,+∞ [0.30, 1.93]

AR-boot EE −∞,−2.00] ∪
[0.42,+∞

[0.24, 1.66] −∞,−0.93] ∪
[0.47,+∞

[0.13, 3.49] [0.42,+∞ [0.33, 1.71]

AR-boot SE-neff −∞,−1.21] ∪
[0.31,+∞

[−0.06, 1.78] −∞,−0.47] ∪
[0.36,+∞

[−0.25, 8.64] [0.31,+∞ [0.10, 1.90]

F-stat p-value 0.096 0.005 0.185 0.027 0.056 0.003
F-boot p-value 0.175 0.016 0.295 0.082 0.161 0.017
Eff. F-boot p-value 0.153 0.011 0.269 0.059 0.140 0.000
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Table 5B: 95% Confidence Intervals, Wald, AR, and Bootstrapped Tests (Continued)

Original
AJR Series

Original
AJR series,
capped at

250

Original
AJR Series,

Albouy
campaign
dummy

Original
AJR series,
capped at

250, Albouy
campaign
dummy

Original
AJR series,

without
contested

observations
in West and

Central
Africa

Original
AJR series,

without
contested

observations
in West and

Central
Africa,

mortality
capped at

250
(1) (2) (3) (4) (5) (6)

With percent of
European descent
in 1975
Wald-asymp [0.30, 1.54] [0.34, 1.08] [−0.24, 2.61] [0.13, 1.34] [0.30, 1.37] [0.31, 1.03]
Wald-boot ME-eff [0.41, 3.25] [0.28, 1.21] [−17.07,−0.03]∪

[0.24, 15.55]
[0.13, 1.84] [0.36, 2.31] [0.21, 1.15]

AR AJR [0.53, 4.309] [0.36, 1.21] −∞,−2.30] ∪
[0.47,+∞

[0.11, 1.96] [0.48, 2.73] [0.32, 1.13]

AR [0.42,+∞ [0.15, 1.52] −∞,−1.51] ∪
[0.44,+∞

[0.10, 5.22] [0.34, 9.12] [0.09, 1.28]

AR-boot EE [0.41,+∞ [0.18, 1.60] −∞,−1.52] ∪
[0.44,+∞

[0.12, 7.25] [0.32, 20.09] [0.10, 1.26]

AR-boot SE-neff [0.40,+∞ [0.12, 1.50] −∞,−1.30] ∪
[0.41,+∞

[−0.10, 5.34] [0.33, 5.20] [0.06, 1.29]

F-stat p-value 0.025 0.000 0.153 0.012 0.015 0.000
F-boot p-value 0.087 0.006 0.243 0.035 0.079 0.005
Eff. F-boot p-value 0.082 0.006 0.223 0.030 0.073 0.005

Notes: All variables from (Acemoglu et al., 2001). Dependent variable is log of GDP per capita in 1995. Right
hand side variable is protection against expropriation, instruments by log settler mortality. Column 2 uses
original settler mortality series, capped at 250 per 1,000 per annum. Column 3 uses original settler mortality
series from (Acemoglu et al., 2001) as the instruments includes Albouy’s campaign dummy. Column 4 do the
same as Column 3 but caps mortality at 250 per 1,000 per annum. Column 5 is the same as Column 1 but
drops the contested observations for West and Central Africa, and Column 6 is the same as Column 5 but caps
mortality at 250 per 1,000. The number of observations in Columns 1, 2, 3 and 4 are 62, with 35 the number of
clusters. In Columns 4 and 5, the number of observations are 51 with 34 clusters. For bootstrap methods, each
experiment consists of 1999 bootstrap replications.
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Table 6A: 95% Confidence Intervals, Wald, AR, and Bootstrapped Tests

Albouy
preferred
sample

Albouy
preferred
sample,
without
Gambia

Albouy preferred
sample; campaign

dummy

Albouy preferred
sample, capped at

250; extended
correction Albouy

campaign
dummy; without

Gambia
(1) (2) (3) (4)

No covariates
Wald-asymp [0.45, 1.29] [0.52, 0.97] [0.01, 2.03] [0.49, 1.17]
Wald-boot ME-eff [0.46, 1.79] [0.53, 1.03] [−9.42, 38.02] [0.53, 1.42]
AR AJR [0.59, 1.82] [0.55, 1.02] −∞,−4.20] ∪ [0.43,+∞ [0.59, 1.33]
AR MD [0.57, 2.34] [0.54, 1.15] −∞,−2.19] ∪ [0.46,+∞ [0.56, 2.64]
AR-boot EE [0.57, 2.64] [0.54, 1.21] −∞,−2.10] ∪ [0.48,+∞ [0.56, 2.25]
AR-boot SE-neff [0.57, 2.63] [0.53, 1.18] −∞,−1.54] ∪ [0.46,+∞ [0.54, 2.38]
AR-boot D&M [0.56, 2.64] [0.53, 1.20] −∞,−1.70] ∪ [0.46,+∞ [0.53, 2.62]
F-stat p-value 0.002 0.000 0.102 0.000
F-boot p-value 0.026 0.003 0.183 0.017
Eff. F-boot p-value 0.024 0.002 0.165 0.013

With latitude
Wald-asymp [0.16, 1.48] [0.34, 0.93] [−0.93, 2.73] [0.29, 1.03]
Wald-boot ME-eff [−2.04, 4.16] [0.29, 1.00] [−30.30, 27.55] [0.03, 1.09]
AR AJR [0.42, 19.04] [0.35, 0.96] −∞,+∞ [0.28, 1.08]
AR −∞,+∞ [0.20, 1.58] −∞,+∞ [−0.24, 1.63]
AR-boot EE −∞,+∞ [0.26, 1.40] −∞,+∞ [0.22, 1.52]
AR-boot SE-neff −∞,+∞ [0.16, 1.36] −∞,+∞ [0.04, 1.77]
AR-boot D&M −∞,+∞ [0.12, 1.54] −∞,+∞ [0.04, 1.93]
F-stat p-value 0.052 0.000 0.403 0.001
F-boot p-value 0.178 0.019 0.498 0.043
Eff. F-boot p-value 0.168 0.015 0.472 0.031

With continent
dummies and
latitude
Wald-asymp [−1.07, 3.56] [0.08, 1.46] [−3.69, 6.56] [0.00, 1.37]
Wald-boot EME [−18.46, 20.01] [−0.02, 1.99] [−49.73, 48.68] [−0.34, 1.34]
AR AJR −∞,−0.343] ∪

[0.107,+∞]
[0.09, 1.72] −∞,+∞ [−0.11, 1.29]

AR −∞,+∞ −∞,−70.12] ∪
[−0.10,+∞

−∞,+∞ [−0.94, 2.05]

AR-boot EE −∞,+∞ [0.04, 4.28] −∞,+∞ [−0.14, 1.70]
AR-boot SE-neff −∞,+∞ [−0.21, 22.79] −∞,+∞ [−0.36, 1.90]
AR-boot D&M −∞,+∞ −∞,−7.408] ∪

[−0.231,+∞
−∞,+∞ [−0.48, 4.21]

F-stat p-value 0.330 0.007 0.583 0.003
F-boot p-value 0.439 0.056 0.631 0.036
Eff. F-boot p-value 0.404 0.037 0.584 0.016
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Table 6B: 95% Confidence Intervals, Wald, AR, and Bootstrapped Tests (Continued)

Albouy
preferred
sample

Albouy
preferred
sample,
without
Gambia

Albouy preferred
sample; campaign

dummy

Albouy preferred
sample, capped at

250; extended
correction Albouy

campaign
dummy; without

Gambia
(1) (2) (3) (4)

With percent of
European descent
in 1975
Wald-asymp [−0.27, 2.16] [0.18, 1.12] [−1.11, 3.38] [0.06, 1.33]
Wald-boot ME-eff [−13.94, 13.38] [0.21, 1.41] [−26.57, 26.53] [−0.20, 1.96]
AR AJR −∞,−1.459] ∪

[0.322,+∞
[0.24, 1.37] −∞,+∞ [−0.02, 1.90]

AR −∞,+∞ [0.07, 3.08] −∞,+∞ −∞,+∞
AR-boot EE −∞,+∞ [0.07, 2.52] −∞,+∞ [−0.66, 4.92]
AR-boot SE-neff −∞,+∞ [0.03, 2.47] −∞,+∞ [−1.13, 45.09]
AR-boot D&M −∞,+∞ [0.03, 3.47] −∞,+∞ −∞,+∞
F-stat p-value 0.168 0.001 0.368 0.022
F-boot p-value 0.290 0.026 0.472 0.074
Eff. F-boot p-value 0.275 0.021 0.452 0.057

Notes: All variables from (Acemoglu et al., 2001). Dependent variable is log of GDP per capita in 1995. Right
hand side variable is protection against expropriation instrumented by log settler mortality. Column 1 uses uses
original settler mortality series from (Acemoglu et al., 2001) as the instrument, but Albouy’s preferred sample
of 28 countries. Column 2 is the same as Column 1 but drops Gambia. Column 3 uses original settler mortality
series from (Acemoglu et al., 2001) as the instruments but includes Albouy’s campaign dummy. Column 4 is
the same as Column 3 uses the extended correction of (Acemoglu et al., 2012) of the campaign dummy, drops
Gambia, and caps mortality at 250. The number of observations is 28 in Columns 1 and 3, and 27 observations
in Columns 2 and 4. There is no cluster. For bootstrap methods, each experiment consists of 1999 bootstrap
replications.
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Figure 1: Power Curve for Testing H0 : θ = θ0 at 5% significance level, using ρ = 0.20
µkz = 1 µkz = 9
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Notes: Authors’ calculation from 10,000 Monte Carlo simulations. For bootstrap
methods, each experiment consists of 499 bootstrap replications. The bootstrap tests uses
Rademacher weights. Sample size is 410 observations, 20 clusters.
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Figure 2: Power Curve for Testing H0 : θ = θ0 at 5% significance level, using ρ = 0.95
µkz = 1 µkz = 9
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Notes: Authors’ calculation from 10,000 Monte Carlo simulations. For bootstrap
methods, each experiment consists of 499 bootstrap replications. The bootstrap tests uses
Rademacher weights. Sample size is 410 observations, 20 clusters.
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Figure 3A: Asymptotic and wild bootstrap tests, 90% and 95% confidence regions.
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Notes: Dependent variable is Civil Conflict ≥ 25 Deaths. The right hand side endogenous variables are the
economic growth rate and its lagged value, instrumented by growth in rainfall at t and growth in rainfall at
t− 1. The included exogenous variables are country specific time trends, log of the GDP per capita in 1979,
log of the proportion that a country is mountainous, log of the nation population at t−1, an indicator for the
countries which are oil-exporters, ethnolinguistic fractionization, religious fractionization, and measures of
democracy. Original Miguel et al. (2004) data set is used. For bootstrap methods, each experiment consists
of 1999 bootstrap replications, using Rademacher weights.
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Figure 3B: Asymptotic and wild bootstrap tests, 90% and 95% confidence regions.
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Notes: Dependent variable is Civil Conflict ≥ 25 Deaths. The right hand side endogenous variables are the
economic growth rate and its lagged value, instrumented by growth in rainfall at t and growth in rainfall
at t − 1. The included exogenous variables are country specific dummies, country specific trends. Original
Miguel et al. (2004) data set is used. For bootstrap methods, each experiment consists of 1999 bootstrap
replications, using Rademacher weights.
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