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Abstract

Microeconomic data often have within-cluster dependence. This dependence affects
standard error estimation and inference in the instrumental variables model. When
the number of clusters is small, Wald and weak-instrument tests can be severely over-
sized. We examine the use of bootstrap methods and find that variants of the wild
bootstrap perform well and reduce absolute size bias significantly, independent of
instrument strength or cluster size. We also provide guidance in the choice among
weak-instrument tests when data have cluster dependence. Two empirical examples

illustrate the application of our wild bootstrap methods.
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1 Introduction

Microeconometric data often have a group structure. When regression errors are cor-
related within these groups or clusters, it is well known that standard error estimates
can be biased and hypothesis testing can be misleading. The common solution to this
problem is to use cluster-robust standard error estimation methods that requires a large
number of clusters. When the number of clusters is small, tests can be oversized even
when cluster-robust methods are used (Cameron et al.,[2008).

In the linear instrumental variable (IV) model, we show that the Wald and weak-
instrument tests, which use the corrected cluster-robust standard errors, are size distorted
when the number of clusters is small, under both strong and weak identification scenar-
ios. For the weak instrument tests, we propose bootstrap techniques that perform well
when the number of clusters is as few as 20 and the instruments are weak.

Our Monte Carlo simulations provide strong evidence of the benefit of bootstrap
techniques in the linear IV model. We find rejection rates level as high as 0.50 with
Wald tests in a strong instruments scenario when the nominal level is 5%. Cluster-robust
versions of the Wald tests can reduce the rejection rates to 0.15 to 0.20, but never as low
as the nominal size. Using our cluster estimating equations and residuals bootstraps, we get
rejection rates that are very close to 0.05.

Recent work has highlighted the use of the bootstrap to improve inference when
there is intra-cluster dependence. In the linear model with only exogenous covariates,
Cameron et al.| (2008) show that a variant of the wild bootstrap (Wu, 1986) with cluster-
based sampling performs well in a variety of cases, and bootstrap tests dominate the
asymptotic tests in terms of size. Using Edgeworth expansions, Kleibergen| (2011) show
that the bootstrap decreases the size distortion of weak instrument tests. |Davidson and
MacKinnon|(2008) develop bootstrap techniques for linear IV models assuming that resid-
uals are homoskedastic. Later, they extend the bootstrap by allowing residual heteroskedas-
ticity but only at the individual level (Davidson and MacKinnon, 2010).

Gelbach et al.| (2007) implement a variant of the wild cluster bootstrap of Cameron
et al. (2008) for the Wald test in an instrumental variables setting. They examine its

performance in Monte Carlo simulations and find that it performs well. But they assume
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that instruments are strong and do not investigate the performance of weak instrument
tests. In fact, in small samples our simulations indicate that the numerical accuracy of the
bootstrapped Wald test may be even worse than the asymptotic weak instrument tests.

It is well known that bootstrap techniques cannot improve performance of the Wald
test when instruments are weak (Moreira et al., 2009, Davidson and MacKinnon) 2008}
Zhan, 2010). Our results show that weak-instrument-robust tests outperform the Wald
test when instruments are undoubtedly strong (i.e., the concentration parameter is greater
than 200). Thus, we recommend the use of weak instrument tests whether or not instru-
ments are strong. The use of our bootstrap methods with weak-instrument tests provides
a comprehensive and practical alternative for testing parameters in the linear IV model
when data have cluster dependence.

We also investigate the performance of the first-stage F-test and the conservative
version of effective F-test proposed by |Olea and Pflueger (2013). Both tests test the null
assumption that instruments are weak. Our simulation results shows that the first-stage
F overrejects the null while the effective F-test underrejects it. However, the bootstrap
version of these tests give similar rejection rates.

The paper proceeds as follows. First, we introduce our versions of weak-instrument-
robust tests suitable for clustered residuals. Then, we describe our bootstrap techniques
and the Monte Carlo experiments that illustrate the performance of these techniques.
Two empirical applications of the bootstrap methods, one about civil conflict in Africa
(Miguel et al,, 2004) and the another about the role of institutions on economic perfor-
mance (Acemoglu et al., 2001) end the paper. Some derivations and technical details are

in the Appendix.

2 Cluster-robust inference

We consider the following limited-information cluster model with G clusters, indexed by

g:

Vig= Yol txytuy G (1)

y2,g = Wolly +vy



where y 4is ang x 1 vector, y2 4 is a ngy x p matrix of endogenous explanatory variables, x,

is a ng x k, vector of included instruments, w, = [z,4: X4] is a ny x k,, matrix of instruments,

z4 and x4 are ngy x k, and ng X k, matrices of excluded and included instruments with

kw = kz+ky, and IT,, = [IT), Hg]' is a ky, X p matrix of first-stage, reduced-form parameters.

We assume that

/ Ugltg Z:“g%
E [(ug,vec (vg)) (ug, vec (vy)) ] =Y, =

UglUg 2”9”9
and (ugy,v,) are independent across clusters. The equations in (1) have the following

general form representation:

yi=y20+Xy+u (2)

y2 = WIL, +V, 3)

where y; is a n x 1 vector, y» is a n x p matrix of endogenous explanatory variables,
W = [Z : X]isan Xk, matrix of instruments, and Z and X are n x k, and n x k, matrices
of excluded and included instruments respectively, with k,, = k; + k; and n = Zngl Ng.

We are interested in making inference about the structural vector parameter ¢. For

example, we may want to test the following hypotheses:
HY : 0 = 0 against HY : 6 # 6.
The usual procedure for inference is the Wald test, defined as:
(éIV - 90>, (\//a\r(élv)) o (éIV - 90) ; (4)

where Oy = (y5PMy ZyQ)_l v5PMyzY1 is the two-stage least squares (TSLS) estimator, Pa

=A(A'A) 1A/, M =I-P,, and @(él\/) is an estimator of Var(fy), the variance of fyy.
When the errors are assumed to be independent and identically distributed (iid), the

estimator of the variance is \//a\rh(élv) = 62 (y’QPMXzyg)_l, where 62 = %ﬁ(@}v)’ ﬁ(élv),

and ﬁ(élv) =Mx(y1— ygélv). However, in the presence of intra-cluster dependence, even
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if this dependence is negligible, we can use the arguments in Moulton| (1990) to show that
@h(élv) underestimates the variance of fyy.

The most commonly used estimator of Var(fy) is an adaptation of the Huber-White
heteroskedasticity robust sandwich estimator (White| 1980; Arellano, (1987), which does

not impose any structure on the variance of error term:

G
Var (éw> = (YIZPMXZYQ)il Z (Prxzy2), 2, (6) (Pmxzy2), (Y’QPMXZW)A, (5)

g=1
where (P, zy2)g is the ng x p submatrix Py, zy2 associated to the gt" cluster, f]g(éw) =
ﬁg(éw)ﬁ’g(éw), and 1, (Ary) is the two-stage least squares (TSLS) residual of the g cluster.
The sandwich estimator does not suffer from the underestimation described above and is
general enough to accommodate different residual structures. The distributions of statis-
tical tests based on the cluster-robust variance estimator, however, can differ considerably
from their asymptotic distributions when the number of clusters is smallﬂ

The consistency of the estimator fry depends on whether instruments Z are suffi-
ciently correlated with the explanatory endogenous variables y» (i.e., |IL;|| # 0). Tests
based on the first-stage F-statistic for detecting weak instruments, such as those proposed
by Stock and Yogol| (2005) and Sanderson and Windmeijer| (2015), assume that residuals
are homoskedastic. | Bun and de Haan|(2010) show that, with nonscalar error covariance
structure, the standard and the cluster-robust versions of the first-stage F-test can overes-
timate the strength of instruments. The test for weak instruments proposed by |Olea and
Ptlueger| (2013) allows clustered residuals, but only one endogenous variable. In Section
M} our simulation results show that the overestimation of cluster-robust first-stage F-test
is more severe when the number of clusters is small, while the conservative version of
the Olea-Pflueger test underestimates instrument strength.

There are a number of statistical tests which have asymptotic and nominal size equal-
ity, independent of the presence of weak instruments, such as the AR-test (Anderson and
Rubin), 1949), the score or KLM-test (Kleibergen), 2002, 2007), and the CLR-test (Moreira)
2003). These tests were originally developed under the assumption that the distribution

of the errors is iid, but have been adapted to allow for arbitrary heteroskedasticity or

1See(Cameron et alf(2008) for the simple linear regression model, and simulations in Section
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cluster dependence of the residuals (Chernozhukov and Hansen, 2008; |Finlay and Mag-
nusson, 2009)).

We start by redefining equations (2) and (3) as:

Y (60) =Wéy (6o) + € (6o) (6)

y2 :WHw + Vu (7)

Where Y (90) = yl—y200, e (00) =u-+ Vd(eo), 5w (90) = [5z (90)/ ,(Sm (90)/]/ = de (90) —|—H’)/,
M, = [IIL,I1,], d(6p) = (6 — 6y) and H= [0,I;,]’. Equations @ and (7) can be further

rewritten as:

8w (00) = T,ud (6p) + Hy + (W'W) ™" W'e (6) (8)
—_—
611}(00)

m, =, + (WW) ™

W'V,

where 8, (60) = [0- (60) .02 (6)] = (W'W) ' W'Y () and II,, = [IT/,II,)) = (W'W) !
W'y are respectively the OLS estimators of the reduced form parameters in equations
(6) and (7). The ky (p + 1) X kw (p + 1) “sandwich” matrix that corresponds to the cluster-

robust estimator of variance of [d,, (6y)’ , 7], where 7, = vec(Il,), has the form

Q(60) = (Lpr1 ® WW) " Z (b)) (L1 @ WW) 9)

where = (6) is the estimator of the ky, (p + 1) x ky, (p + 1) variance matrix of vec(W'e () ,
wW'V)f

Let us introduce four more statistics before presenting the cluster version of the weak-

instrument tests:

Akim (0o) = TL, (6p)’ {ﬁaz(sz (90)} ' 5. (6o),

IL. (6o) = mat (frz ~ Qs (60) [Q;Zéz (00)} 3, (90)) ,

Var (Aw (60)) = . (60)' [@s.5. (60)] L. (8), and

2Details on Appendix A.



~

— ~ ~ -1 <
Var (7. (00)) = Q.. — Qs (00) Do, (00)] Qo (00),

where A\xim (Ap) is the Lagrange multiplier of a constrained minimum-distance mini-
mization problemﬁ T, = vec(ﬁz) is a k.p x 1 vector, mat is the rematricizing operator
that maps the k.p x 1 vector vec(ﬁz) into the k, x p matrix ﬁz, and SA)WZ(;Z (0p) is the
submatrix of Q (Ap) associated to the covariance estimator of (7, 5, (0p)). The estimators
of the variances of Ak (0o) and 7, (6p), where 7, (6y) = vec(ﬁz (0y)) are \//%;"(S\KLM (60))
and Var (72 (00)), respectively.

We define the weak-instrument tests for the cluster-sample model as follows:

Definition 1. (Weak-instrument Tests with clustered residuals). The AR, KLM, and CRL

statistics for testing the null hypothesis Hy : d (fy) = 0 are, respectively:

Aar (00) = - (60)' [Oas. (00)] 6 (00) 3 (k2),

Axam (60) = Axam (60)’ {\//E;“ (;\KLM (90)” ' Axim (6o) 4 x*(p), and

ACLR (90) = {;AAR (90) —rk (00) +

/TAag (B0) + 1 (80))% — 4 [Aar (Bo) — Axuw (60)] % 1k (9@} ,

where rk (6y) is a statistic for testing the rank of II, (6p).

The symbol “ 47 stands for convergence in distribution and x? (s) is the chi-squared
distribution with s degrees of freedom. The CLR-statistic converges to a nonpivotal
distribution; however, its critical values, for a given value of rk (), can be simulated
from independent x?(k. — p) and x?(p) distributions. The tests converge independently

of instrument strength.

The above statistics have the correct size asymptotically even when the structural
parameter 6 is not identified; however, they tests are inconsistent if II, = OH The Aar (60)
statistic tests if d (y) = 0 indirectly by testing the assumption HY : §, () = 0 against
H f : 0, (0o) # 0. The degrees of freedom of the Aar (0p)-test’s asymptotic distribution

depends on k., the number of excluded instruments, which can be larger than p, the

3See derivation in Appendix
*The tests will not reject Ho : d (o) = 0 when H; : d (6o) # 0 is true, because the estimated value of .
will be close to 0, independent if |0 — 6y]| > 0.
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number of tested parameters. The larger is the difference k, — p, the less powerful is
the Aar (6p)-test. The Axpm (0o)-test degrees of freedom is equal to the number of tested
structural parameters, independent of the number of excluded instruments. Neverthe-
less, the Axpm (0o)-test, as a LM type of test, loses power at local extremum and inflection
points of the Aar (6p)-test. The Acpr (0p)-test, because it is a function of the Aar (6p)-test,

does not show spurious decline of power experienced by the Axpm (6o)-test.

Remark 2.1. The Aag (0o)-test also has a Lagrange-multiplier interpretation. It can be

rewritten as

Aar (60) = Aar (60)' [Var(Aar (60))] " Aag (60) ,

where Mg (6g) = [SAL;Z 5. (60)]710. (6o) is the Lagrange multiplier of constrained-minimization

problem (A-3), and Var (5\ AR (00)> is the estimated variance of A (6p)-

Remark 2.2. The KLM-test is originally derived from the continuously updating estimator
(CUE) objective function. The first-order condition of that problem includes the deriva-
tive of the variance with respect to the parameters. The Axpm (6p) is derived from the two-
step minimum-distance estimator objective function, which does not require the deriva-
tive of the variance with respect to the parametersﬂ Because of the regression model
is linear, the minimum-distance estimates of the untested well-identified parameters are
the same as the GMM-CUE estimator under the null assumption (Goldberger and Olkin,
1971).

Remark 2.3. If 0 is scalar, the rank statistic rk (6) is defined as:
~ e -1
vk (6o) = IL, (6o)’ [Var (HZ (90))] 1L, (6o) .
If § is not scalar, then the rank statistics proposed by Kleibergen and Paap, (2006) or
Kleibergen and Mavroeidis| (2009) should be used.
3 Bootstrap methods for the cluster-sample IV model

In many microeconometric applications, data have intra-cluster dependence in which

the number of clusters are small and, consequently, the asymptotic results are a poor

5See the derivation of Ak (6o) in Appendix
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approximation of the true distributions of the test statistics. For example, many papers
in labor economics use research designs that rely on policy changes at the state level,
in which the number of clusters is at most 51 in USA and 8 in Australia. Our simula-
tions show that asymptotic tests that use cluster-robust variance estimators may under-
or overreject with as many as 160 clusters. Therefore, bootstrapping them accordingly
can also improve their performance in terms of size, when the number of clusters are
small. We next discuss two classes of bootstrap methods for weak instrument tests in
linear IV cluster model represented by system (I): the estimating equations and residual

bootstraps.

Estimating equations (score) bootstrap

We begin the exposition by rewriting equation (8) as:
A 1 G
0w (00) = 6w (B0) + (W'W) "> " wieg (6).
g=1"—"—>—"

hg(6o)

A simple idea about bootstrapping the distributions of 4, (f) is based on perturbing

the empirical distribution of the scores {h, (60)}%_,, but keeping the Hessian (W/W)

g=1
fixed. Hu and Zidek (1995) denote this type of bootstrap the estimating equations (EE)
bootstrapﬁ

Under Hy : d (6p) = 0, a candidate bootstrap estimator for d,, (6p) is:

5% (B0) = bu (60) + (W'W) ™' S " (o), (10)
- - - ~ N N 1. -
where &, (60) = (0,3, (60)), and &, (6) = 0, (6g) — Qs 5. (o) [95252} 3. (6). The &, (6;)
is the estimator of d,, (6p) derived from equation (A-3). The sequence of bootstrap scores
~ G ~
{hz (00)}g:1 is sampled with replacement from the recentered scores {hy (60)}521, de-

fined as:

G
By (60) = iy (60) — =2 3" By (60),
g=1

6See also[Hu and Kalbfleisch|(2000) and Kline and Santos) (2012).



where hy (60) = W}, (60), and &, (6p) = Y, (60) — Wb (60) /]

- ~ - G
The estimator of the variance of d;, (fy), denoted by 5 ;5 (o), is a function of {h; (0o) }

and does not depend on 4% (6y) itself. This implies a computational gain of the EE
bootstrap over the residual-type bootstraps discussed below.

We define the bootstrap estimator of AKILM (Ay) conditional on ﬁz (0o) as:

Siwna (00) = T 00’ [ 05,5, 00)] 32 (00), )

where ﬁgz 5. (0o) is the block variance of ﬁgw 5., (0o) associated with the estimator 5% (6o)
obtained from equation . The Acpr-test, conditional on rk (), are functions of the
Aar-, and Agpm tests. Therefore, bootstrap realizations of the Acpr-test are generated
from the bootstrap realizations of the Aar- and Agym-tests.

The general algorithm for computing the bootstrap tests are:

1. Compute Aar (6p), Axim (6o), and Acrr (o) and save the estimates of ﬁz (6p) and
rk (90)

2. Forb=1,..., B bootstrap simulations:

G
g=1’

(a) Sample {wy} a sequence of bootstrap weights, and define the bootstrap

score realizations as:

{fq (4),...,h% (90)} - {wlﬁq (b)) ..., wehE, (90)}.

(b) Compute 07, (A) and its associated variance ﬁ;w 5., (00)-

(c) Compute ;\I*<LM (00), given by equation 1} and its variance \//aTr(S\I’*(LM (60)),
which is:

Var (R (60)) = I (60)' [G5.5. (60)] 1 (6).

(d) The b*" bootstrap tests are:

Ry (00) = 52 (60)' [0 5 00)] 52 (60)

Riiaas (60) = Neoaa (00)' | Var (Agua (60))

7If the number of observations per cluster is the same, then %—‘7 = é

1.




A * 1 A *
Acirp (0, b) = {QAAR,b (60) — rk (6o) +

\/ |Aag (60) + 1 (60)] Py [k (60) = Mgy (60,0)] x xk (90)} .

3. The bootstrap p-value for a test is:

B
~ok 1 A
p-value = — ;I:I (A[_Lb (60) > Ay (00)) ,

where [ (-) is the indicator function and A(; represents the Aar-, Axim-, or Acrr-
test. Reject the assumption if p*-value is smaller the desired significance level of

the test.

Next we discuss two types of estimating equation bootstraps.

Definition 2. (Estimating Equation (EE) Bootstrap) Let {wg}le be a sequence of boot-

strap weights. Conditional on I (6y) and rk (6y), the EE bootstrap weak instrument tests
~ G ~

are computed from the bootstrap score sequence {h; (90)} L= {wghy (60)}521. We

g:

consider two bootstrap weights:

1. {wg}le are sampled from a multinomial distribution, so that

~ ~ 1 )
Pr(h;(go):hj(90)> :5, jZl,...,G.

2. {wg}ngl be an iid sequence sampled from a distribution satisfying E [w,] = 0 and

Var (wg) = 1. We discuss the specific distributions below.

The EE bootstrap with multinomial weights is the same as the bootstrap algorithm
1 of Kleibergen| (2011) for GMM models. The second bootstrap is similar to the wild
score bootstrap proposed by Kline and Santos (2012). They assume, however, that the
tested parameter is identified and consistently estimated. Therefore, the empirical score
is obtained by replacing the tested parameters by their two-step GMM estimates. Clearly,

the 2-step GMM estimator is biased when instruments are weak.

- G
Remark 3.1. Sampling the score from {wghg (00)} . corresponds to sampling the resid-
9=

G
g=1

where Wy = wy — w and w = (ZG wﬂ"). We can interpret

uals from {w,€, (o)} =1 n
10



{@g}ngl as the sequence of adjusted bootstrap weights.

Remark 3.2. Define &, (69) = (0,6, (60)), where &, (6y) = (X'X) ' X'Y (), and b,, (6y) =
(8- (80) , 6z (80)), where &, (8) =(W'W) "W'Y (). The estimators &, (6y) and &, (6o)
could replace 4, (fp) in equation . The bootstrap scores are generated as before, and
recentering is unnecessary if a constant is included in x,. In the case of using d,, (6p),
5. (6) is the mean of the distribution of the bootstrap estimator 8% (f). Therefore, in

computing the bootstrap version of the tests, 4% (f) should be replaced by 5% (6)—0- (6o).

Residual bootstraps

By resampling the estimated residuals, we can generate bootstrap samples. The bootstrap
weak instrument tests are computed in the same way as the asymptotic ones, using the
bootstrap sample in place of the original data. We consider two types of residual boot-
straps. In the first version, we bootstrap the residuals only from the auxiliary regression,
see equation (). In the second version, we sample residuals from equations (6) and (7)

simultaneously.

Single-equation residual bootstrap

Let {é, (90)}5:1 be a sequence of residuals, where é, (6y) = Y, (6y) — wgéw (0p) is the
ng x 1 vector associated to the g'" cluster, and bw (00) is defined in Remark We define

Y™ (6p), the bootstrap realization of Y (6y), as
Y* (6y) = Wiy, (60) + 6* (6p),

where & (60) = (&} (60)’,...,é5 (00)'), {&; (6o) } = {wyé, (90)} " - We define the

bootstrap estimates of d,, (fp) and Axrm (6o) as:

/
ox (00) = [ 85 (60) 8% (8p) } = (W’W)_1 W'Y* (), and

; ~ ; -1,
S (60) = T (60)' [$0es: (60)] 62 (60),
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where Qg,; 5+ (6o) is an estimator of variance matrix 5 (00) This differs from the EE
bootstrap in that Q*: 5: (6o) is a function of 5% (0).

The steps for implementing the residual bootstrap are similar to those for the EE
bootstrap. In step 2a, we use a sequence of {é} (90)};}:1 = {wyéy (90)}90:1. In steps 2b

and 2c, we compute 67 (6g), A (60), Qg*(g* (6p), and
— ~ , 1
Var (A (60)) =1L (00)' |B5.5: (60)| T (60)

The b bootstrap AZR,b (60), AI*(LM,b (6p) and [\ELR’b (6p) tests are obtained by replacing
52 (00), 5 (60), Moo (90), and Var (A (60) ) with &, (60), 5. (60), Sy (60), and

Var ()\* (00)> in the formulas of step 2d, respectively.

Definition 3. (Single-equation residual (SE) bootstrap): Let {wg}ngl be a sequence of
bootstrap weights satisfying E [w,] = 0 and Var (wg) = 1. Conditional on I (6y) and

rk (6p), the bootstrap data generating process (dgp) is:

1. Inefficient SE (SE-in):
o ¢ ¢ - ¢ - c .
¥ (90)}921 = {wydu (00) + & (90)}g:1, where {6} (60)}5, = {wgéy (60)}5y;

and

2. New efficient SE (SE-neff):
-, G . . G -, G _
{To00f = {wodu00) +8;00)} _, where {8 (60)};_, = {8, (G0)} 5.

Remark 3.3. If a constant is not included in x4, then the fitted residuals {é, (90)};;:1 should

be recentered.

Remark 3.4. As in Remark we could use {&} (90)}511 = {wy&, (90)}521, where &, =
Y, (00) — wggw (Ap) to generate bootstrap realizations of Y (6p). Then, when comput-
ing the bootstrap weak instrument tests, 6* (6) — 4. (6) should be in place of §* (6p),
where 8% (6y) is the bootstrap estimator. In this case, the only difference between the
EE and SE bootstrap weak instrument test is the bootstrap estimator of the variance of

6% (6o). For the EE bootstrap, we use {& (6o) }5:1' while for the SE bootstrap, we use use

{&; g (6p) le, where & | (6p) = Y; (0o) — wg&’; (6p) to estimate the variance.
8See definition in Appendix
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Multi-equation residual bootstraps

The bootstrap dgp for the limited-information model system (1) can be set as:

Y (00) = wydw (60) + &5 (60)

A~ Colt 3
y;,g = WgHw + Vg7

where {85 (00), V51| = {wyby (60) ,wg¥g} oy, & (00) = Yy (60) — Wydu (6) and ¥, =
Vo3 — Wylly.

Davidson and MacKinnon| (2010) propose a more efficient bootstrap procedure that
incorporates information about the correlation structure between e, and v, when esti-
mating the first-stage residuals. They first estimate 1I,, using the following auxiliary

regression model

y2 = WIL, + é (0y) I' + residuals, (12)

to obtain V (60) = y2 — WIL, (60), where 11, (6o) is the OLS estimator of IL,,. If the
residuals are homoskedastic, IT,, (fp) would be equivalent to the three-stage least squares
(38SLS) or limited-information maximum likelihood estimator (under residual normality).
Under cluster residuals, however, ﬁw (Ao), the estimator of II,, derived from equation

1), incorporates information about the cluster nature of the residual covariance matrix.

Therefore, the cluster residual for the bootstrap dgp is

{&5 (00), 7 (60) 5, = {wyby (B0) g%y (B0)} 5, ,

where ¥, (69) = ya., — Wyl (6p).

Let 4 (6p) be the continuous updating estimator derived from equation . A new
bootstrap procedure uses &, (6y) = Y4 (6o) — x47 (fo) in place e, (6p) for the bootstrap
dgp:

{85 (80) %5 (00}, = {84 (80) ,wy¥4 (B0)}S,

The multi-equation residual bootstrap weak instrument tests are computed using the
same formulas as the asymptotic tests described in Section 2| using the bootstrap sample

in place of the original one. In contrast with the EE and SE bootstraps, the estimated of
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values of II, (6p) in step 1 do not need to be retained.

The three discussed multi-equation residual bootstraps are:

Definition 4. (Multi-equation residual (ME) bootstrap): Let {W9}9G:1 be a sequence of

bootstrap weights satisfying E [w,] = 0 and Var (wy) = 1. The bootstrap dgp (dgp) for

G .
{Yg (00) ’y279}g:1 18:

1. Inefficient ME (ME-in):

~

. G , G
{Y; (60) ,y;ﬁg}gzl - {wg(sw (60) + & (6) , wyll,, + v;}gzl, where
{65(00) 92} = {wgy (00) ,wg¥g}S
g 0/, g g=1_ Wg g 0 7ngg g:1/

2. Efficient ME (ME-eff):

Y =% ¢ ¢ 4% T =% ¢
{Y; (60),¥3, (00)}g:1 = {wgéw (6o) + € (60) , wylly (6o) + ¥, (90)}g , where

{65 (60) %5 (60) Y5, = {wyby (60) ,wy¥y (60)}5, ; and

3. New efficient ME (ME-neff):

(%6055, 00}

N G
o {xﬂ (60) + € (00) , wylly, (60) + Vv (90)}9 , where

{8 (60) %5 (90}, = {wey (B0) s wg¥y (B0) Y5, -

Remark 3.5. Since the AR (0p)-test does not depend on the first-stage equation, the SE-in,
ME-in, and ME-eff bootstraps are equal. For the same reason, the SE-neff and ME-neff

bootstraps are also equal.

Remark 3.6. The previous bootstrap procedures take the rank statistic as given. In this
case, the ME bootstrap version of the CLR-test as explained in Davidson and MacKinnon
(2008) requires a double bootstrap procedure: one bootstrap for the rank statistic and a
second bootstrap conditional on the bootstrapped rank statistic. Therefore, we have not

computed the ME version of this statistic.
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Other bootstrap methods
Davidson and MacKinnon bootstrap for weak instruments

In Section[d} we compare the performance of the proposed bootstraps to the wild restricted
efficient (WRE) residual bootstrap proposed by |Davidson and MacKinnon| (2010). The WRE
bootstrap simulates the distribution of the original AR- and KLM-tests, which are defined

respectively as:

n —ky Y (60) MxZ(Z'MxZ) " Z'Mx Y (6))
k. Y (60) MwY () '
Y (00)/ PMxZﬁw(GO)Y (00)
Y (60) MwY (6p)

AR(0y) =

and (13)

KLM(6) = (n — k) (14)

The WRE bootstrap dgp are generated from residuals sampled at individual level. We de-
fine as Davidson and MacKinnon bootstrap (DM bootstrap) the WRE bootstrap method

with dgp are generated by residuals sampled at cluster instead, i.e.

7% 2 % G ¢ 2% 4 s G
{0500 950}, = {wod (00) + & (00)  will (00) +; (00)}

’

where {6 (6) , ¥ (60) }_| = {wyy (60) ,wy¥g (60) )5y , With ¥ (60) = y20 — WqlL, ().
If the residuals are homoskedastic, then the AR and KLM of equations and
are distributed asymptotically as F{ x,) and x* (p), respectively. Although the AR-test
is not pivotal if the residuals are heteroskedastic, Davidson and MacKinnon! (2010) show
that the limiting distributions of n"2Z'MxY (6p) and n~2 Z'MxY* (6,) are equal. The
same is true for the probability limits of n 'Y ()'MwY (6p) and n="Y* (6g) Mw Y* (6p).
Therefore, since the AR-statistic and its wild bootstrap counterpart converge to the same
limit distribution, their bootstrap method is valid for the AR-test in the presence of
heteroskedastic errors. They also show that their bootstrap for the KLM-test is correct
if the concentration parameter is high. We can use the same arguments in Davidson and
MacKinnon!(2010) to show that the DM bootstrap for the AR-test with cluster residuals is
consistent, assuming that the number of clusters is increasing as the sample size increases

and the number of observations within clusters is constant. However, the same argument

cannot be applied in the number of observations within each cluster increases at the same
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rate as the number of clusters.

Bootstrap for Wald tests

For the Wald test, we consider three types of bootstrap methods. Two of them are similar
to the multiequation residual bootstraps, in which the bootstrap residuals are sampled

from:

~x ~x1G ~ ~ % ~x G , ~
{ug? Vg g=1 = {wguwwgvg}?:l and {eg (90) 1 Vg (00)}921 = {wgeg (90) y WgVyg (00)}5:1 ’

where i, is the TSLS residual. Let 6, be the bootstrap TSLS estimator obtained from
the bootstrap sample generated by the residual sequence {1, f/;}gczl. The Wald mul-
tiequation instrumental variable (ME-IV) bootstrap is the Wald statistic computed as in
equation @), replacing (éIV — 6p) with (9;}, - éIV)/ and \//a}(élv) by the bootstrap variance
estimate of éf‘v. When the bootstrap sample is based on {é; (60), vy (6?0)}5:1, the boot-
strap residuals is the same as in the ME-eff bootstrap. In this case the Wald bootstrap

statistic is compute with (Gf‘v — o) in place of (Ary — ), where
iy = (75 (90) Praz55 (60)) ' 55 (60)' Purcz (o),

with y7 (60) = ¥3 , (60) x 6o +x7 (60) +€ (6). For both Wald bootstrap tests, the variance
of the test is computed using the bootstrap sample and estimated parameters in equation
(5)-

The third Wald bootstrap method is the classical pairs bootstrap. This method is a
completely nonparametric one. In the pairs bootstrap, the bootstrap sample is generated

as:

Pr ({ngv:YQ,gJW;} = {yl,j7y27jawj}) = 5/ J = ]-7 s 7G'

Since the pairs bootstrap dgp does not impose the null under hypothesis for generating
the bootstrap samples, the computation of the Wald bootstrap test is centered at the TSLS.

The test is computed by substituting the bootstrap estimates of § and residuals into the

equations (@) and (5).
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Bootstrap first-stage F- and efficient F-tests

If there is one endogenous variable, the first-stage F-statistic for the null hypothesis Hj :

II, = 0 is defined as:

i1, (Var(iL)) 1.

F ,
k.

(15)

where @(ﬂz) is the cluster-robust variance matrix. A more recent test for testing instru-
ment weakness suitable for clusters residuals is the effective F-statistic proposed by [Olea

and Pflueger (2013), defined as

Kepp= - " N N /

tr <ElszEsz> +2ftr (Esz) max eval (Esz>
where Z+ = (ZMXZ)*%MXZ, 2.1y is the estimator of the variance of n~2ZY'V, and
tr () and maxeval (-) are the trace and the maximum eigenvalue operators, respectively.
The parameter f in the formula of K. is a function of the maximum Nagar bias relative
to the benchmark, and require a numerical routine. We use the simplified and conserva-
tive version of the test which sets f = 10. In this case, the critical values for F,;; are on
Table 1, page 360, of Olea and Pflueger| (2013).

The computation of the F- and (conservative) effective F-tests are computed based
only on the first stage regression residuals (SE-1%). Under the assumption that the null
hypothesis is true, I, = 0. Therefore, we generate bootstrap samples as

{y;,g}ngl = {Wgﬁw + "’;}QGI ,
where {\'I;}ngl = {wg\'fg}f:l, Vg = y2.,,—Wyll,,and IT,, = (IL, ﬁx) = (O, (xX'x)~* X’yg).
The bootstrap tests are computed exactly as the original tests, and their respective p-

values are obtained as previously described. We also compute the pairs bootstrap version

of the first-stage F-test, which has the bootstrap statistic centered at IL,.
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Notes on the bootstrap algorithm

Residual weights. Apart from the pairs and EE bootstraps with multinomial (M) weights,
the remaining weights used for the proposed bootstraps satisfy E[w,] = 0, and E[w2] = 1.
This ensures that the distribution of the resampled scores or residuals have the same the
first and second moments of their underlying empirical distributions. Matching higher
moments of the bootstrap and empirical distributions yields the asymptotic refinement.
Many residual weights satisfy this property for the wild bootstrap. Liul (1988) proposes
weights defined as wy, = (; — E((y), where (, is a gamma random variable with shape
parameter 4 and scale parameter . The gamma (') weights also satisfy Elwl] =1,
and therefore match the first three moments. Davidson and MacKinnon| (2010) suggest
sampling the weights from the Rademacher distribution, which is defined as

1 with probability 1/2
o —1  with probability 1/2 '
The Rademacher (R) weights match the first four moments if the underlying distribution
is symmetricﬂ

A summary of the bootstrap methods used in the paper is presented in Table
[Insert Table [T here]

4 Monte Carlo simulations

We now evaluate the performance of the proposed cluster bootstraps using Monte Carlo
simulations, and we experiment with a variety of dgps. The baseline model has a struc-

ture that resembles the panel data random-effects regression. We repeat the system

°Liu also proposes a continuous weight based on the normal distribution, defined as wy, = wyzy —
E(wg)E(zy), where wy and z, are independent normal random variables with mean £ (1/17/6 + 1/1/6) and
variance 3. These will maintain the first three moments of the empirical distribution of residuals. Mammen
(1993) weights are alternative discrete weights defined as:

L= { (1-+/5)/2 with probability 1;\/?, .
. .1 1 5
1-(1-+5)/2  withprobability 1 — £52.
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for convenience:

e L

Y20 = ZgHz + Xng + vy

We assume that § = 0is scalar, and setIT, = (¢, 0, ..., 0)’, so that only the first instrument
is relevant. The included instruments are x, = [¢, €,,], where ¢, is a ny x 1 vector of ones,

vec(eg) ~ N(0,1, yand y =1 = (1,..., 1)'. The excluded instrument z, is set

gx (kg —1
as zy = tn,dy + 9y, where d, is a k, x 1 vector and 9, is a ny, x k, matrix. Both d,
and 9, are sampled from independent multivariate standard normal distributions and
adjusted such that 30| ny (dy — d) (dy—d) = (1 -\ nly,, whered = & Y5 dy,
and (chzlﬂ’ngﬁng) = X nly,, with %L;ﬁg =0, %Zngl L’gﬂg =0,and 0 < X\ < 1.
These adjustments allow us to have n~1Z'MxZ = I;_, where n is the total number of
observations. If A = 0, the excluded instruments are the same within groups. We keep
the instruments W = [Z : X] fixed in all simulations.

The cluster-robust first-stage F-statistic for testing Hy : II, = 0 defined in equation
is asymptotically distributed as
IT, {Varoo (ﬂzﬂ - I,

n k: + F(k,, +00),

-~

Pk,

where Varoo(ﬂz) = lim;, 400 %E[Z’ MxVV’'MxZ] and F(k,, +0c) represents the asymp-
totic F-distribution. If the residulas are non-spherical, then the parameter p, can be
interpreted as the “concentration parameter” divided by the number of exogenous in-
struments. Since II, = (7,0, ..., 0), the noncentrality parameter becomes:

¢z

Mk, = nk—z [Varoo (ﬂz>] ;11 , (16)

where [Varoo (f[z)} " indicates the first diagonal entry of {Varoo(f[z)] . We fix the value

for ¢, as:

k-
Cy = 71/"[']?2'

[varse (1),
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We replace Varn(Il.) in Equation [16{by 1Z'MxE[VV’| W] MxZ, where E[VV’ W|] is
explained below. We show in Appendix D] that, under our dgp, s, is closely related to
2 parameter of Olea and Pflueger (2013) which captures the bias of the TSLS

We generate errors of the model as:

u, = (ug +up) 211" for g=1 o

N|=
N

vg = (pug+owy) lzngl" + (1= p%) 7 vi+ (1= ¢%)* v

where (ug,vi) = Vé (e1g.629) @ g (g, vg) = V1= (1,4, %24), €5 = (e1,9:€29) ~
N(0,12), ¥y = (¥ 4 9¥3,) ~ N(0,l2p,), and €, and 1, are independent. The parame-
ters p and o are scalars that capture the intra-cluster and the idiosyncratic correlations,
respectively, and z;1 4 is a scalar that corresponds to the first element of z, matrix. The
parameter x depicts the degree of heterogeneity in the model. When « = 0, the residuals
are akin to the random-effects panel-data model. The scalars ¢ and ¢ are weights for the
cluster and idiosyncratic components of the variance, which satisfy 0 < ¢, < 1 and

¢ + ¢ = 1. Therefore, the joint distribution of (u’g7 vg’)/ is approximately:

u W, +W, pW,+ oW
9| N 0, g g PVWyg < g
Vg Wy + W,
where Wy = ¢ ¢4t (211,4)%", and W, = ©ln, (211,4)*". Therefore, we find E[VV'| W] =
W+W, where W = diag({Wg}le) and W = diag({Wg}le). Due to the normalization,
E[(211,4)’] =~ 1 by construction. Moreover, assuming that the number of observations
per cluster is the same (n, = 7 for all g, which implies that n = n x (), the asymptotic

variance Vars, (f[z> simplifies to

Varso (ﬂz) =L, (on (1 =)+ ¢),

and the|Nagar| (1959) approximation for computing the bias of the TSLS is:

E [0y — 0| W] = (b —2) (n2) ! ((;Sﬁ(l—)\)p+gog) (17)

The bias of TLS is derived in Appendix
!1See derivation in Appendix
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If ¢ = ¢, it is clear from equation that the within-cluster correlation p counts for
n times more than the correlation of the idiosyncratic term o for the bias of the two-
stage least squares (TSLS) estimator. By setting p = o, and using the concentration
parameter divided by the number of exogenous instruments as defined in equation (16),
the approximate bias of the IV estimator can be rewritten as

(k- —2)

: (1)~ p.

E [éw - 0‘ W] ~
This is similar to the bias for éw derived in Bun and de Haan| (2010).

Simulation results

Our results are based on 10,000 Monte Carlo experiments. In the experiments, we set
(kz,k2) = (2,5), A = 0.1, ¢ = ¢ = 0.5, and p = p. We investigate the cases where p;, =
0.1, 1, or 9, indicating very weak, weak, or strong instruments, respectively. For each iy,

I, (ZMx Z)1L,
we report also report “Zz = %
z

, which is the standard concentration parameter
divided by k.. We choose « from {0, 1,2}, meaning no heterogeneity, heterogeneity and
strong heterogeneity, respectively. We set the endogeneity degree as p = 0.20, 0.95.
Finally, we consider cases where the number of observations per cluster are 20, or the
number of observations differs across cluster but average approximately 20 per cluster.
For the latter case of nonidentical cluster size, we first set the total number of clusters G,
and then choose the number of observations for each cluster from {16, 17,...,25}. The
number of clusters with different sample sizes is equal. For example, when G = 40,
we have four clusters with 16, 17, and up to 25 observations each. To save space, we
only report results for the case where the number of observations differs across clusters.
For the same reason, we do not report results of the SE-neff bootstrap Akpm-test either
because the results are very close to the ones obtained from ME-neff bootstrapF_ZI

In our experiments, we use 199 and 499 bootstrap replications for size and power
results, respectively. In repeated Monte Carlo experiments, the sampling error from

a small number of bootstrap replications should cancel out. In practice, at least 999

replications should be used.

12The full set of results are available upon request with the authors.
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Size results

Tables2A]and 2B contain the rejection rates for the asymptotic tests with their respective
bootstrap counterparts for 1, =1and 9, with G = 20 clusters and different heterogeneity
levels (k), instruments strengthes (11,) and endogeneity degrees (p). The significance

level for the tests is 5%.

[Insert Table 2A] here]

[Insert Table 2B here]

The rejections rates of the asymptotic Wald test differ considerably from the nominal
level even with strong instruments (1, = 9), and this difference is increasing in the
degree of endogeneity (p) and residual heterogeneity (x). The bootstrap Wald tests also
have rejection rates far from the nominal size even when the instruments are strong.
Nevertheless, the performance of the Wald ME-eff bootstrap, which imposes the null
Hy : 6§ = 6y when generating the bootstrap samples, is superior to the Wald ME-IV
bootstrap, which does not impose the null. All the asymptotic weak instrument tests
are oversized when residuals heteroskedasticity is at K = 0, or 1, and the Aag-test is
undersized under strong heteroskedasticy (v = 2); however, their rejections rates are
closer to the nominal level than are those of the Wald tests. Except for the EE bootstrap
with multinomial weights, which are severely undersized in all scenarios, the remaining
proposed bootstraps present rejection rates closer to the nominal level. The SE and ME
bootstraps outperforms the EE bootstraps, specially when the degree of heterogeneity is
high, which is similar to the Kline and Santos| (2012) results. The SE-neff bootstrap for
the Aar and Acpr-tests and the ME-neff bootstrap for the Axpm-test with Rademacher
(R) weights are the bootstrap tests with rejection rates closer to the nominal level in
almost all cases. In particular, they outperform the remaining bootstrap procedures when
heteroskedascity is very strong (v = 2). The DM bootstrap tests performs well under
homoskedastic residuals (x = 0). In the presence of heteroskedastic residuals, however,
their performance worsens with the distortion increasing with heteregeneity degree. This
results is not surprising since the number of within cluster observations is high vis a vis

the number of clusters.
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The asymptotic cluster robust first-stage F-test overrejects the weakness of the instru-
ments, and this overrjection can be high-above 84% when the concentration parameter is
small. On the other hand, the effective F-test underrejects the same hypothesis, which is
an expected result since we are using a conservative version of the test. The bootstrapped
F and effective F-tests present, respectively, lower and higher rejection rates compared
to their asymptotic counterparts. Interestingly, the SE-15 F- and effective F-tests give
similar rejection rates under Rademacher weights.

In Tables and we study the performance of the tests when the number of
clusters increases, but the number of observations within the clusters remains constant.
The results are based on the dgp using heteroskedastic errors (x = 1) with endogenity

degree at p = 0.95.

[Insert Table BA]here]

[Insert Table 3B here]

Even even when the instruments are strong (1, = 9), the asymptotic and bootstrap
Wald test remains oversized in all experiments, but with rejection rates approaching the
nominal size as the number of clusters G increases. The asymptotic weak instrument tests
rejection probabilities also approach the nominal level as the sample size increases. The
differences between the weak instrument tests rejection probabilities and nominal level
are smaller compared to difference obtained from the Wald test. When the instruments
are weak and strong, the weak instruments bootstrap tests also converge to the nominal
level, although their convergence is not monotonic; however, when the instruments are
very weak (i, = 0.1) only the bootstrap Aar test has rejection probabilities close to nom-
inal size. As expected, the DM bootstrap AR-test rejection rates approach the nominal
size as the number of clusters increases, but the convergence is slower when residuals are
highly heteroskedastic (x = 2). The EE bootstrap tests with multinomial weights remain
severely undersized and slowly converging to the nominal size. Finally, the asymptotic
cluster robust first-stage F- and effective F-tests have different rejection probabilities for
testing Hy : II, = 0. Remarkably, the bootstrap SE-1% for F- and effective F-tests give

similar rejection rates.
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Power comparison

Next, we compare power across the alternative bootstrap tests, using the same dgp as
in Tables 2A|and 2B The bootstrap results based on gamma weights are similar to those
obtained with Rademacher weights, therefore we only report the later. The power curves
of the bootstrap Aar- and Acpr-tests are very similar for SE-in and SE-neff bootstraps .
Therefore, only the SE-in results are reported. The same for ME-eff and ME-neff bootstrap

Axpm-tests, and, thence, only the power curves of ME-neff are reported.

[Insert Figure 1] here]

[Insert Figure 2| here]

Figures|l|and 2|reveal the great size distortion of the asymptotic tests and of the Wald
bootstrap tests, although the distortion is lower when the concentration parameter is
higher. The figures also reveal that the asymptotic Aar, AxLm, Acrr tests are not consis-
tent when instruments are weak (i, = 1), as expected. Surprisingly, even the Aag-test
with strong instruments (i, = 9) are also not consistent with small number of clusters.
For the AaRr, and Acyr cases, the SE-in bootstraps power dominate the EE bootstraps, and
the difference is more pronounce when endogeneity is high (p = 0.95). In the Akym case,
the SE-in bootstrap test also power dominates the other bootstraps methods. There is
no clear evidence if the EE method power dominates the ME-in and ME-neff bootstraps,
but the ME bootstrap Axypm-tests, however, present better size performance than the EE
bootstrap Axpm-test.

The simulation results suggest that SE bootstrap methods have better power perfo-
mance than the other bootstrap methods, and their performance in terms of size is at least

as good as the other bootstraps methods.

5 Empirical Applications

We now use our bootstrap methods in two empirical applications that fit system (). We
construct confidence regions for the structural parameter of interest by inverting the boot-

strap tests. The 1 — « confidence set is formed by the points in the parameter space that
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do not reject the null hypothesis at significance level a. We use 1999 bootstrap samples
to compute the bootstrap p-values. In both empirical applications, the unboundedness
of the confidence sets prevents us from using less intensive computational methods than

the ones suggested in Davidson and MacKinnon| (2010).

“Economic Shocks and Civil Conflict: An Instrumental Variables Approach”

Miguel et al.|(2004) investigate the relationship between economic conditions and civil
war in sub-Saharan Africa. The authors are interested in how the deterioration of the
economic environment affects the probability of a civil conflict. The endogeneity problem
arises from several channels. One channel is the government institution quality, which
is not observed by the econometricians and drives both economic growth and the prob-
ability of civil wars. As an instrument for income growth they use variation in rainfalls.
This choice is motivated by the fact that those economies rely on subsistence agriculture.
Their data consists of an unbalanced panel of 41 African countries from 1981 to 1999, with
743 total observations, averaging 18.6 observations per country. The structural equation,

which captures the impact of economic fluctuations on civil conflict, is:
Cit = AGDP; 101 + AGDP; 1102 + X 47y + uig, (18)

where C;; is an indicator variable equal to one if there is a civil conflict with at least of
25 battle deaths per year and zero otherwise, AGDP; ; is the annual growth rate, X; ; is a
set of control variables including country effects and country-specific time trends. They
consider a linear probability model and estimate by TSLS with current and lagged
rainfall growth as instruments. Using country as the cluster unit allows them to treat
the errors within each country as serially correlated; however, they treat each country as
independent units.

In Table @ we reproduce the same estimates of the Table 4 columns (5) and (6), page
739 obtained by Miguel et al.|(2004). We found that the negative shocks on the economy

raise the probability of civil conflict, as expected by the theory.

[Insert Table {4 here]
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We report the cluster-robust F-tests, which show that the exogenous instruments both
AGDP;; and AGDP;; jare statistically different from 0 at the 5% significance level.
Nevertheless, the F-tests are below the Staiger and Stock| (1997) rule-of-thumb of 10,
and below the critical values in Table 1 in Olea and Pflueger| (2013), suggesting that the
instruments may be weak. The rank statistic of Kleibergen and Paap| (2006), however,
points strongly to the joint significance of the instruments.

We examine the above results by comparing the Wald test to the A pr-test confidence
regions, since the model is just identified. Figures[3AJand BB|show the confidence regions
for § = (01, 62) derived from the original models (5) and (6) in Miguel et al.| (2004) page
739, respectively. The asymptotic confidence regions are constructed from the inversion
of the asymptotic Wald and Aag-tests, while the bootstrap confidence regions are ob-

tained from the Wald ME-eff and A zr SE-neff bootstrap tests with Rademacher weightsr_gl

[Insert Figure 3A|here]

[Insert Figure 3B here]

The asymptotic Wald confidence regions are elliptic and indicate a positive correlation
among the estimated structural parameters. The Wald bootstrap confidence regions are
very different from their asymptotic ones. [Zhan (2010) establishes that this difference
between the asymptotic and bootstrap confidence regions is not surprising if instruments
are weak. Both the asymptotic Aar and Aar SE-neff bootstrap confidence regions are
non-convex and unbounded, very different from the bounded asymptotic Wald confi-
dence set. Therefore, even though the rank-test suggests strong correlation between
instruments and endogenous variables, the Ayr and Asr SE-neff bootstrap confidence
regions points to weak instrument presence.

Interestingly, in Figure the effect of economic fluctuations on civil war conflict
is statistically insignificant at 10% level according the Wald asymptotic test. At the same
significant level, however, this hypothesis is rejected by both Asr asymptotic and SE-neff

bootstrap tests. The same is true in Figure [3B|at 5% significant level.

BThe results are similar with gamma weights.
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“The Colonial Origins of Comparative Development: An Empirical Investiga-

tion”

The seminal article of /Acemoglu et al. (2001) shows how institutions, as measured by
the protection of risk expropriation, affect economic performance. Capturing this ef-
fect is difficult because economic growth also shapes institutions. Moreover, there are
potential omitted variables that influence both institutions and economic performance.
The authors argue that the mortality rates faced by Europeans affect their willingness to
establish settlements and choice of colonization strategy. Places where mortality rates
are high are likely to have “extractive” institutions, whereas healthy places are prone to
receive better economic and political institutions. Therefore, the mortality rate would be
a good instrument for the institution variable. Their proposed regression model is the

following two stage model:

Yig = Tigl+ Tigy + uig

Tig = MigTm + TjgTe + Uig

where y is the log of GDP per capita in 1995, r is the protection of risk appropriation,
and m is log settler mortality. |Acemoglu et al.|(2001) consider several specifications in
which z could include latitude, continent dummies, percentage of European descent in
1975, and malaria, measure by the 1994 Falciparum malaria index. The index i refers to
colonial country, and the index g refers to countries which share the same mortality rates.
For example, due to the difficulty of obtaining historical data, several Latin American
countries are assigned the same mortality rates. In Africa, the mortality rate of a country
are inferred from the mortality rates of a neighboring country. Therefore, as pointed
by |Albouy| (2012), the errors of the regression specification should be clustered and not
treated an independent as originally done in Acemoglu et al. (2001).

Albouy| (2012) also raises other criticism of /Acemoglu et al.|(2001) concerning mea-
surement of the mortality rate. In particular, he argues that mortality rates during peace-
time and “campaign” episodes are not the same. He also argues that some data for
West and Central African countries are unreliable. By adding a campaign dummy and

discarding contested observations, he finds that, because of weak instruments, the effect
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of institutions on growth becomes less clear. Acemoglu et al.|(2012) rebuff each of Albouy
(2012) criticism in the same issue of the American Economic Review[] Since the economet-
ric investigation of Acemoglu et al. (2012) and Albouy|(2012) are based on samples with
at most 62 observations and 35 clusters, we revisited their findings by comparing their
asymptotic methods with the bootstrapped methods we propose.

Tables and B contain the confidence intervals for some of the specifications in
Acemoglu et al|(2012) together with bootstrapped p-values of the first-stage F- and ef-
fective F-tests. The AR-AR]J refers to AR the confidence intervals obtained by |Acemoglu
et al. (2012)F_5I The remaining confidence intervals are the methods discussed in previous

sections.

[Insert Table FA| here]

[Insert Table 5B| here]

In the line with the previous empirical example, the Wald ME-eff bootstrap confidence
intervals are larger than the Wald asymptotic confidence intervals in several cases, as
depicted on Column (3), which indicate weak instruments. The AR-AR] confidence inter-
vals have in general a smaller range when compared with the Asr confidence intervals.
In the majority of the cases, the Asr bootstrap confidence intervals have a larger range
compared to the asymptotic ones. Nevertheless, the Asr bootstraps confidence intervals
still suggest positive the effect of institutions on growth in the majory of cases. Only in
very few cases, for example, as the model that includes continent dummies and latitude

as explanatory variables, that the SE-neff bootstrap confidence intervals indicates that

"The confidence intervals for 6 based on the clustered AR tests in |Albouy] (2012) and |Acemoglu et al.
(2012) are different, although they use the same regression specification, data and software package. The
reason is that|Albouy|(2012) wrote his own code taking the advantage of the built-in functions of Stata while
Acemoglu et al.| (2012) use the Stata package rivtest developed by [Finlay and Magnusson| (2009) which
compute the minimum distance version of the AR-test. The algorithms have different estimators of the
covariance matrix (60), which, due to small sample size, results in very different confidence sets. That is
the reason why|Acemoglu et al.{(2012) could not match |Albouy|(2012) Albouy’s (2012) results as mentioned
on footnote 28 of their paper.

>We use the weakiv package developed by [Finlay et al. (2013) to compute the AR-AJR confidence
intervals. The weakiv package, which incorporated the rivtest, has the cluster correction variance
ﬁ % which is in the default of the Stata cluster routine to compute the variance matrix. This
correction makes the intervals approximately 0.01 larger than the ones reported in |Acemoglu et al.| (2012).
The correction term is also used when computing the AR and AR bootstrapped tests.

term
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the institutional effect on growth is statistically insignificant. We also note that the length
of the bootstrap Aar SE confidence intervals of are smaller than the Asr EE bootstrap
ones in most cases, as suggested by the power curve simulations. For the case of the
F and efficient F statistics, their bootstrap p-values are very close to each other with the
asymptotic F and effective F p-values are higher and lower than their respective bootstrap
counterparts, as also indicated by the Monte Carlo size simulations.

Albouy| (2012) discards countries with conjectured mortality rate, which reduces the
sample to only 28 countries. |Acemoglu et al| (2012) argues that the results using this
small sample are mainly driven by Gambia, which is an outlier. In Tables and
repeat a similar exercise as the previous tables using |Albouy| (2012) preferred sample
of 28 countries, and with the same sample without Gambia. By reducing the sample, the
cluster dimension is lost; however, our proposed methods remains valid in the individual
heteroskedastic case. We also include the DM bootstrap confidence intervals which are

valid in the presence of heteroskedastic errors.

[Insert Table [6A] here]

[Insert Table [6B] here]

We find that using Albouy’s preferred sample, the Ayr asymptotic and bootstrap
confidence intervals, but not the AR-AJR, cover the entire real line in all specifications
except the one with no covariates. By excluding Gambia, the confidence intervals become
smaller; however, in some specifications, we cannot ruled out that the institutional effect
is not statistically significant. For the remaining specifications, the bootstrap confidence
intervals are generally larger then the asymptotic ones, specially the DM bootstrap, sug-
gesting that a potential smaller effect of institutions on economic performance in com-

parison to Acemoglu et al.[(2012).

6 Conclusion

We propose bootstrap methods for Wald, weak-instrument-robust, F- and effective F-

tests in the linear IV framework with clustered residuals. Our simulations show that
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asymptotic tests are size distorted even when instruments are strong and the sample size
is relatively large. The same simulations shows that even with small sample size, resid-
ual bootstraps of weak-instrument-robust tests present rejection probabilities close to
nominal size. From all the proposed bootstrap methods for the weak-instrument-robust
tests, the single-equation residual bootstrap power dominates the other methods. We
also find that the single-equation residual bootstrap for F- and effective F-tests are very
close to each other, and their asymptotic tests over- and underreject the null hypothesis,
respectively.

We use the proposed methods in two empirical applications: the impact of economy
on civil conflits of Miguel et al. (2004), and the study of how institutions affect economic
growth discussed by |Albouy| (2012) and |[Acemoglu et al.| (2012). In the first application,
the Wald asymptotic and bootstrap confidence regions are very different. The AR asymp-
totic and bootstrap confidence regions are larger than their Wald counterpart, and they
indicate no evidence that a bad economic performance affects the probability starting
a civil conflict in sub-saharan countries. In the second application, although the AR
single-equation residual bootstrap confidence regions are larger than the AR asymptotic
confidence region, the majority of the replication results support the claims in|Acemoglu

et al.| (2012).
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A Cluster variance-covariance matrix
Define hy (60) = 3_:; hy 4 (60) = wieg (6) with h; g = w; ,€ig (00),and q4 = S dig =
(Ip ® wg)vg with q; g = (I, ® W;g)i}i?g, where w, = (z4: %), vy = vec(yay — Wylly),
ey = Y, (00) —wyd,. Let us partition = (6y), the variance matrix in equation (9) as = (6y) =
[Ehh (00) , Zhq (00) : Eqn (60) , Eqq (60)]. Each component of = (6)) is estimated as:
G
Zas (00) = % S (dy (6) — 1gd (60)) (5, (B0) — 155, (60)),

g=1
where d, (6g) = hy (6) or qq (6p) with d (6g) = 2 3°5 | dy (60), and s, () = hy (60) or

qg (0) with 5 (6p) = % Zngl sq (6p). For computing the variance of the weak instrument
tests in Section we replace (e, (0y) ,vy) by (&4 (00) ,¥y) = (Y4 (00) — wgéw (00) ,¥2,9 —

wgﬁw). In the case of the EE bootstrap, we use
G

B (60) = wghS (o) = wg (w'gég (o) — % Y wig, (eo))

g=1
in place of hy (6y). The remaining variance terms of the EE bootstrap are not computed

because we are conditioning on IL. (Ay). For the residual bootstrap cases the covariance
matrix is computed by substituting (eq (60) ,vg) by (ef , (60), vy ), in hy(6p) and qq
equation defined above, where ej | = Yy (60) — w43, (60), vy, , = ¥3 4 (60) — WL, (6o),

and (0} (6p) , IT%, (Ay)) are the bootstrap estimates values.

B Derivation of the Lagrange multiplier estimator
The Kleibergen test is the Lagrange multiplier test derived from the following restricted

minimization problem under Hy : d (6y) = 0:
!/

511, 9() —de 9() —H ~ -1 Sw 0() —de 0y)) — H
. ;( (80) ~ 1, (60) v) a0 ( (80) ~ TLud! (6) v), )

Tw — T T — T
Tw, Y w w w w

s.t.d (90) =0
where H= [ ¢/ [, | and the estimator Q () is defined as in equation (H) In the
following, we omit (fy) from &, (fp) and d(6p) and Q (6y) to facilitate the exposition.

From the FOC condition we obtain:
H (ﬁgwtgw)_l (Sw ~Hy (00)) =0, and I, ()’ (ngtgw)_l (5w ~Hy (90)) = 2(0), (A2

from where we derive 7 (6) = [H'(Qs,.5, ) "H]I'H'(Q5,5.) 0w, and A (6p) = IL, (6;)’
(Qs,5,) " Mg‘swé”)_léw,where Mgz‘;w‘;“’)_l = I—PI(?‘S’“‘”JJ)_1 and Pgéwéw)_le [H(Q5,5,) "

w
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H]' H' (Qs,5,) " is an oblique projection Using the fact that ((Algw(;w)*lMg2 swow)
[(©5.5.)7%, 0: 0,0], further simplification allow us to write the Lagrange multiplier esti-
mator as A (6y) = II, (6p)’ (ﬁ(gzgz)_l 4. An estimator of the variance of A (f) conditional
on II, (6y) is \//a\r(S\ (60)) = IL (6p) (Qs.s.) LTI, (60). Finally, we have that the estimator

for II,, derived from equation (A-2):

~

~ ~ -1,
#w (00) = vec (Hw) — Qs (ng(;z) 5.
— ~ ~ . -1
The estimator of the variance of 7 (6p) is Var (7 (6p)) = Qrprw — Prws. <Q5z52) Qs 70 -
The Anderson and Rubin test is the Lagrange multiplier test derived from the follow-

ing restricted minimization problem:

S (= 00) [Rnn] (50— 0). (A-3)

min
S s.t. 6,=0 2

From the FOC conditions with respect to J, and the Lagrange multiplier A we find
AAR (0o) = (ﬁ(sz(;z)_lgz, and &, (6p) = 5z—§5z52 AAR (Ao), which is the same as the minimum-

distance estimator for vy in equation (A-2).

C Bias of the cluster IV estimator for ¢

In matrix notation, the cluster residual model in system (1) is

yi= y20+Xvy+u . uu’ uv’ wl - Yau Duv
EV'Ll EV'V

yo = ZII, + XII, + V
]/ EUV - [Euv1/- . -/Euvp]/, Wlth Euv]- = dlag[

. . a .
{3, yu, }le}, forj=1,...,p,and Xy,y,, = diag [{Zvj,gvm,g}g:1:|’ for jm=1,...,p. Let

G

where, v = vec (V), Zyu = diag[{ Ty, u, }9:1

n= Zngl ng and assume that rank (II,) = p. The TSLS estimator Oy can be written as:

'qQ-lc, (A-4)

v — 0 = (YIQPMXZY2)71 yhPuyzu= (I+Q'A)~
where Q = IILZ’MxZII,, A = IILZMxV + V'MxZII, + V'PyyzV, and C =
II,Z'Mxu + V'Pyy,zu. We have Q7! = n7! x O, (1) and A = /n x O, (1), which
implies that, as n — +o0, (I+Q'A) ™" = 0, (1). Using a Taylor expansion (see Nagar
(1959)) we derive (I+ Q_lA)_1 ~I-Q~!A. Equation can be simplified to:

by —0=Q ' {Cvu— (Av +Ay) Q'Cy} + H,
where Cyy =V'Pyizu, Ay = [I,Z'Mx V, C,, =II.Z'Mxu, and H has terms related to

odd moments of the joint distribution of (u/,v’)" and terms which are of small order.

5. . y—1 . 5. . y—1 e
The oblique projection PS)S“J"‘“) satisfies the properties H'(Q,;wgw)*lPﬁlQ&w"w) =H'(Qs,,5, )" and

S5. . \—1
p{jowse) H=H.
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Assuming that the first and third moments of the joint distribution are zerosm the bias

of the IV estimator is approximately:
E [e}v - 9} ~E {Q*l [V’PMXZHZLU - AVQ”Cu} }

where Pyiyznt = Puxz—Pumxzin.. The first element of V' Py zpiuis viPyyznia,

whose expectation is E[V| Py zmiu] = trace(Pyy zit Zuvy ). So, E[V'Pyyzmiu] =
[trace(Pyiy zms Zuvy ), - trace(Pyy zrs Ty, )]’ Partition Q' as Q7' =[Q,..., Q7).
Therefore, L .

E [Q_IV'PMXZHZL u} =" trace (PMXZHZLEUVJ.) QY. (A-5)

]_
To study E[Q_lAVQACu], we rewrite AyQ'Cy as Vec(C{lelA’V) = IIZMx(V®
u')(I,@Mx ZI1,) vec(Q ™). Since E(V @ ')=[Zy,u, - - ., Xv,u), we have E[C, Q_IA’ | =
?:1 I, ZMx v,u MxZII1.Q7, and, consequently,

p
E[Q'AvQ'Cy] =) Q ' Z'Mx3,,uMxZIT.Q7. (A-6)
j=1

Substituting Equations [A-5and [A-6| we have:

E [e}v _ ] Ztrace <PMXZH¢EH\,J>I Q7 — ZQ T2/ Mx Sy, uMx ZILQ7. (A-7)
7j=1
Whenp =1, equatlon simplifies to trace(Pyy zXuv ) Q1 —2(I1, Z'Mx X v Mx Z11,) Q 2,

which is the same as the bias derived by Bun and de Haan|(2010).
Assuming that (Z'MxZ) = nly, and II, = ||IL,| Iy, we find:

—QM 1— QM
trace (So2) trace (Si2)

E [élv — 9} S
whereS1y = n'Z'Mx Y uwwMxZ, S22 = n7'Z'MxXywMxZ,and p? = [trace (822)]_1 n ||l'IZH2
represents the concentration parameter for the case of non spherical errors derived by
Olea and Pflueger| (2013) in Theorem 1. If the residuals are homoskedastic, then Xy, =
7;1,, and, Equation[A-7]is simplified to (k. — p — 1) Q17 where 7'= [r, ..., 7.

Consider that the errors of the model are generated as uy = ¢, vy + €4, and vec(vy) =

(Vg @ tn,] + €4, for g =1,...,G, where v, is scalar, and v, and €, are p x 1 and (ngp) x 1
vectors with (vg, 1) ~ /égN(0, [1, p': pl, 1), (g4, €5)" ~ /@GN (0,[1,0" : 0,1,]®1Ly,),
where p' = [p1,...,pp)and @' = [p1, ..., 0p] are p x 1 vectors capturing the intra-cluster

effect and the idiosyncratic term correlations and the scalar ¢4, 1 > ¢4 > 0. So the joint

distribution of (u, vec(v,)')" is:

1f u, vec (V) follows a multivariate distribution, we can invoke Isselis” or Wick’s theorem, which says
that the expected value of odd moments of a centered multivariate normal distribution are 0.
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Uy ~N o, Wy + Wy (o' @10, ) Wy + (& @1n,) W,
vec(vy) : I, ® (Wy +W,)
where Wy = ¢g 1,0, , W, = (1—¢,) I,,. We interpret ¢, and (1 — ¢,) as the weights
due to the cluster and idiosyncratic effects in the correlation.

Under this assumption, Yy, = diag{ p;W, + ngg}f_l and Z'MxXyy,MxZ =
Z'Mx (ij+ QjW)MXZ, for j = 1,...,p, where W = diag {Wg} » and W =

diag {W }Gi . Then, after further simplifications in equation (A-7), the bias of IV es-
95 g=1 p

timator turns out to be
E [a}v — 9] ~ {trace [PMXZHZLW} I, - Q I, (ZMxWMxZ) HZ} Q1p

+ {trace |:PMXZH§_W:| I, — Q ', (Z’MxWMxZ) Hz} Q1o

The first term captures the bias of the IV estimator due to the cluster effect while the
second term is function of the within cluster correlations.

Let us define Z and MxZ as Z = [dju,, +9,...,dgu,, +19’G]/ and MxZ =
[z1,....28] = [(d1 — H) + (9 — Lmﬁ)/, oy (dg - d) tne + (96 — anﬁ)/]' where
d = ( -1 Z ~ ngd )and 9 = (n‘l 29:1 L%gﬂg). We interpret d, and the part of
instruments which is common to all observations in cluster g, while that 1, captures the
part which is idiosyncratic for each observation.

Deflne 19 =N —1 / 19 . If we further lm ose ln the data enerate process that 19 -
g g p g p g
Ng

9
9 =0, ¢y = ¢, ng = fiforall g, then we have Z’MxZ =n Zczl[(dg —H)’ (dg —d) +9,9,],

g=1"g
—d) =

1. In the

Z'MxWMxZ= (1 — ¢) Z'MxZ, and Z'MxWMx Z=¢7i (Z’MXZ G 9 ) When gen-
erating the data, we reescale the values of d, such that 5 n, (d, ~d)' (d,
<

(I =X)nl, and (Zg 1050g) = Anlg,, so ZMxZ = nli, for 0 < A

simulations, we set A = 0.1. Then, the bias of TSLS becomes:
Elfv—0]~ n(1-N(k-p-1)Qp+(1-0) (k. —p-1)Q "¢
~ (k.—p-1)Q 'on(1-N)p+(1-¢) 0

The last equation is the same as equation (17).
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D The concentration parameter

When p = 1, the cluster robust F-test for testing Hy : IT = 0is F = I T A 199
where gnznz is the cluster robust variance estimator. Let =i 11, be the true (condi-
tional) variance of II,. The above statistic can be asymptotically approximated by p, +
F(k,,+00) where p, = IT, [k.Zr.11.] ' IL., and F(k., +00) represents the F-distribution.
Since only the first instrument is validity, i.e. II, = (c;, 0, ..., 0), the noncentrality parame-
ter becomes y, = 2k, ! [Em..];)}, where [Ep.n.];; indicates the first diagonal entry of
[Emr.] " In our simulation experiment, we set i, = 0.1, 1 and 9 to indicate weak and

strong instruments, respectively. We fix c; as

k.
Co =\ | = =T Mk
[HH Hz]ll

The noncentrality parameter derived above is closely related to the measure proposed
by Olea and Pflueger. Their test is
Y4MxZ (Z'MxZ)"' Z'Mxy»
trace (ng)

7

1Azeff =

where S99 is an estimator of n~1E[Z'Mx VV'MxZ)], which is, under our assumptions
n=1¢ (¢, n, \) ZMxZ, where ¢ (¢,7,\) = ¢n (1 —\) + (1 — ¢). The F.; statistic can be

approximated to

I, (Z'MxZ) 11, V'MxZ (ZMxZ) ™ (ZMxV)
&(p,m, A) trace (n"1Z'MxZ)  £(¢,7, \) trace (n~1Z/'MxZ)
or, using the fact that Ep = £ (¢, 7, \) (ZMxZ) ™" and n~'Z'MxZ =I_, the later term

becomes ji;, +k, V' MxZ [Enznz]’l (Z'Mx V). The second term of the above expression

is asymptotically distributed as F'(k,, 4+00).

The effective degrees of freedom is defined as:

{ (W)T“”@

n

Keff =

T

E[Z’Mx VV’'Mx Z] E[Z'Mx VV'Mx Z
trace<[ xn xZ] E| xn x])

+ 2trace (E[Z’MXVV/MXZ])

E[Z'Mx VV'MxZ
max eval (%)

which, in our case, is simplified to

[trace (& (¢, 7, \) nlg.)]” (1 + 2z)
 trace < (P, 1, N)] n21k2> + 2trace (¢ (¢, 1, ) nly, ) maxeval (€ (¢, 7, \) nly,) x
Nk
+

(E(¢sm,
2

2)2(1+22) _ ke(420)
(&(o:m,0)) N

(£(,,N) ko~ (1421)
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Table 1: Different Bootstrap Methods for Cluster IV

Method Tests ‘ Weights ‘ Estimator for d,, (6y) | fixed ﬁz (60)? | Hyp imposed?
Estimating Equations (EE) AR, KLM,CLR | M, T',R S (60) Yes Yes
Residuals Single Equation

inefficient (SE-in) AR, KLM, CLR IR S (60) Yes Yes
new-efficient (SE-neff) AR, CLR IR b (60) Yes Yes
First-stage (SE-1°%) E Fesy I,R - Yes Yes (II, = 0)
Residuals Multiple Equation
IV (ME-IV) Wald I, R - No No
inefficient (ME-in) AR, KLM I, R S (60) No Yes
efficient (ME-eff) AR, KLM, Wald IR S (60) No Yes
new-efficient (ME-eff) KLM IR b (00) No Yes
Davidson-MacKinnon (DM) AR, KLM I, R 5w (6o) No Yes
Pairs Wald, F M - - No

Notes: The weights M, I" and R correspond to the multinomial, gamma, and Rademacher weights, respectively.
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Table 2A: Size (in percent) for testing Hy : 0 = 0 against H; : 6 # 0 at the 5%
significance level, dgp with group-level random errors, 20 clusters with different
number of observations in each cluster

R = 0 k=1 k=2
pe, =1 g, =9 pe, =1 pe, =9 e, =1 Mk, =9
(9.96)  (89.64) (24.17)  (217.53) (30.11)  (352.02)
Test p= 020 095 0.20 0.95|| 020 095 020 095| 020 095 0.20 0.95

Wald Asymp. 13.68 61.09 17.94 25.04|| 30.44 55.25 41.53 40.88| 43.75 79.94 52.33 53.67

ME-IV I' 834 40.87 14.69 19.03|| 11.24 39.16 16.86 18.45|| 13.90 67.00 10.99 23.05
R 858 37.81 14.25 17.94| 10.39 42.86 15.34 17.43| 12.79 70.65 9.22 23.90
ME-eff I' 4.06 21.79 5.15 10.57| 7.05 25.51 7.07 10.70|| 9.56 55.87 4.97 21.11
R 437 1400 414 647| 691 2253 541 8.47| 12.06 56.49 6.77 25.22

Pairs 438 23.18 8.71 11.69| 3.80 30.53 7.04 11.11|| 1.15 44.10 2.06 3.56
AR Asymp. 19.79 19.79 19.79 19.79| 12.12 12.12 12.12 12.12|| 2.60 2.60 2.60 2.60

EE M 003 003 003 0.03f 000 0.00 0.00 0.00f 0.00 0.00 0.00 0.00
r 737 737 737 737| 357 357 357 357| 054 054 054 0.54
R 495 495 495 495| 267 267 267 267| 045 045 045 045
SE-in I 741 741 741 741\ 535 535 535 535| 148 148 148 148
R 523 523 523 523| 414 414 414 4.14| 130 130 130 1.30
SEneff I' 741 741 741 741 578 578 578 578| 202 202 202 202
R 506 506 5.06 506| 464 464 464 4.64| 431 431 431 431
DM r 375 375 375 375| 292 292 292 2921172 11.72 11.72 11.72
R 581 581 581 581| 8.04 804 8.04 8.04| 1520 1520 1520 15.20

KLM Asymp. 16.44 21.39 15.71 16.36|| 13.60 15.12 12.73 12.62| 4.83 690 4.75 4.96

EE M 017 033 0.12 0.20} 0.00 0.01 0.01 0.01| 0.00 0.00 0.00 0.00
I 584 844 541 552| 382 462 336 343| 095 1.09 098 0.99
R 534 757 474 5.02|| 344 413 306 3.11|| 087 1.02 0.85 0.87
SE-in I' 6.05 889 572 589| 527 6.07 502 458| 198 237 168 177
R 557 841 524 552|| 481 6.00 462 460 2.03 276 1.87 198
ME-in I' 6.07 893 569 585| 545 6.19 485 451| 204 246 170 1.79
R 533 715 5.04 524| 461 541 449 440 189 250 1.80 1.85
ME-eff I' 590 9.00 553 588| 533 612 487 454| 201 248 1.68 1.79
R 529 675 5.09 514| 464 531 454 4.45| 183 226 180 1.87
ME-neff I' 594 898 538 576| 563 6.74 514 503| 265 448 258 2.88
R 509 640 489 492| 496 582 481 4.75| 495 748 477 485
DM r 305 311 305 328| 710 776 776 7.87| 13.03 19.56 19.42 20.93
R 421 431 430 455| 747 752 757 731| 12.18 15.67 15.64 16.24

CLR Asymp. 17.06 21.73 15.80 16.33|| 13.56 15.14 12.70 12.52| 4.77 654 4.68 4.92

EE M 009 027 011 018} 0.00 0.00 0.01 0.01| 0.00 0.00 0.00 0.00
I 599 853 544 555| 390 459 339 343| 091 1.03 097 0.98
R 510 759 471 497| 317 401 3.07 3.10| 0.85 096 0.83 0.86
SE-in I'  6.09 9.00 573 593| 533 6.10 503 456| 193 227 168 177
R 543 824 524 552| 472 599 461 4.60| 200 265 187 198
SE-neff I' 593 878 552 579| 569 674 516 496| 262 4.04 249 279
R 508 796 5.02 528| 511 6.67 503 497| 497 761 476 526

(Continued).
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Table 2B: Size (in percent) for testing Hy : § = 0 against H; : 6§ # 0 at the 5%
significance level, dgp with group-level random errors, 20 clusters with different
number of observations in each cluster

k=0 k=1 K=2
i, =1 Mk, =9 pg, =1 e, =9 e, =1 Mk, =9
(9.96) (89.64) (24.17) (217.53) (39.11) (352.02)
Test p= 020 095 020 095 020 095 020 095\ 020 095 020 0.95

F Asymp. 88.08 88.20 100.00 100.00|| 96.99 89.46 100.00 100.00| 95.46 84.61 100.00 98.87
SE-1¢ T 2580 26.70 93.07 93.09|| 50.04 48.81 99.37 94.43| 58.43 31.60 98.75 75.51

R 16.25 16.92 83.67 83.93| 35.21 45.88 97.02 90.89| 47.55 36.54 96.49 75.71

Pairs 12.11 1227 7947 79.06| 29.84 25.51 9545 71.09| 34.36 11.76 91.09 29.64

Eff. F Asymp. 0.74 0.81 5355 53.67| 5.32 2535 9735 9145 17.46 28.24 98.30 70.55
SE-1¢ T 13.84 13.94 86.88 86.83|| 30.68 48.78 99.82 99.34| 47.22 46.33 99.97 83.26
R 16.37 16.82 90.21 90.78| 36.45 50.74 99.93 99.25| 51.21 45.65 100.00 82.70

Notes: Authors’ calculation from 10,000 Monte Carlo simulations. For bootstrap methods, each experiment
consists of 199 bootstrap replications. The number in parenthesis is the concentration parameter divided by
k. assuming homoskedastic errors. The weights M, I" and R correspond to the multinomial, gamma, and
Rademacher weights, respectively. Sample size is 410 observations.

Table 3A: Size (in percent) for testing Hy : 6 = 0 against H; : 6 # 0 at the 5% significance

level, with strong heteroskedastic group-level random errors, p = 0.95, and different
number of observations in each cluster.
pr, = 0.1 pi, =1 fe, =9
(0.70) (2.42) (1.66) (2.16) (2.13)| (7.05) (24.17) (1659) (21.56) (21.34)| (63.42) (1753  (14928)  (194.06)  (19208)
Test G= 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160

Wald Asymp. 9551 9040 8855 86.31 87.46| 71.84 5525 46.82 3516 35.05 3135 40.88 17.62 11.04 9.57

ME-IV T 8418 8155 7283 69.55 6994 48.69 39.16 30.19 2101 19.12| 15.05 1845 1046 818 7.63
R 8358 8220 7379 7033 70.66| 4876 42.86 28.02 1881 17.63|] 1196 1743 790 631 6.68
ME-eff T' 6312 55.65 2940 13.09 7.32| 3323 2551 1594 988 776 1181 1070 936 753 7.02
R 5565 51.18 2682 11.80 7.02| 2723 2253 1239 751 6.33 835 847 636 527 559
Pairs 61.07 66.80 6396 63.54 6533 26.08 3053 19.14 1543 14.32 597 1111 652 617 6.87

AR Asymp. 46.00 1212 766 528 428 46.00 1212 7.66 528 4.28 46.00 1212 7.66 528 4.28
EE

M 000 000 0.02 019 0.65 0.00 0.00 002 019 0.65 0.00 0.00 0.02 019 0.65
I 433 357 603 58 572 433 357 603 589 572 433 357 603 589 572
R 196 267 464 477 4.67 196 267 464 477 4.67 196 267 464 477 4.67

SE-in I' 606 535 639 584 543 6.06 535 639 584 543 6.06 535 639 584 543
R 533 414 506 487 4.68 533 414 506 487 4.68 533 414 506 487 4.68

SEneff I' 660 578 649 582 537 660 578 649 582 537 6.60 578 649 582 5.37
R 551 464 508 481 466 551 464 508 481 4.66 551 464 508 481 4.66

DM r 23 292 577 555 537 236 292 577 555 537 236 292 577 555 537
R

1213 804 557 538 482 1213 804 557 538 482 1213 804 557 538 482
KLM Asymp. 54.47 2314 1633 1015 7.68| 42.62 1512 10.77 728 596| 33.18 1262 941 6.88 572

EE M 000 000 020 080 224 000 001 008 040 1.61 0.00 0.01 008 031 1.54
r 710 749 1065 821 6.70] 542 462 653 564 530 412 343 536 510 5.01
R 377 679 1010 799 6.71 281 413 6.07 565 511 215 311 511 498 4.92
SE-in I' 1051 1032 1052 771 648 788 607 657 545 5.07 598 458 526 491 477
R 1075 946 1051 791 677 776 600 621 547 5.04 613 460 529 490 4381
ME-in T' 1037 10.12 1082 791 644 790 619 646 552 523 6.20 451 544 494 4.87
R 968 820 899 735 627 742 541 572 509 490 598 440 512 484 486
ME-eff T' 1041 1040 1022 7.67 6.18 783 612 6.60 543  5.08 6.06 454 540 486 4.69
R 894 747 762 610 5.38 708 531 546 513 491 582 445 512 498 478
ME-neff I' 1028 11.05 1030 7.66 622 815 674 652 547 5.07 6.27 503 533 496 4.61
R 815 823 770 612 534 667 582 556 506 495 542 475 514 498 485
DM r 394 705 744 718 643 861 776 757 670 583 10.01 787 757 658 557
R 564 742 633 657 5091 723 752 583 565 510 787 731 554 544 497

CLR Asymp. 62.05 2293 1499 956 6.73] 51.61 1514 1067 721 580| 4320 1252 933 6.78 5.69

EE M 000 000 007 037 131 0.00 000 008 036 1.53 000 0.01 008 031 151
I 636 729 988 821 6381 502 459 652 569 535 363 343 535 509 5.00
R 319 636 904 765 6.38 243 401 598 562 521 1.97 310 509 5.03 4.94
SE-in I 924 1014 1001 773 650 706 610 657 546  5.07 529 456 525 492 477
R 921 925 953 774 6.18 686 599 612 544  5.03 520 460 528 486 4.82
SE-eff T 886 1080 997 780 6500 749 674 654 542 5.07 564 496 539 489 481
R 791 1019 942 773 6.15 639 667 619 541  5.04 484 497 518 492 476

(Continued).
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Table 3B: Size (in percent) for testing Hy : 6 = 0 against Hy : § # 0 at the 5% significance

level, with strong heteroskedastic group-level random errors, p = 0.95, and different
number of observations in each cluster.
Mk, = 0.1 Mk, = 1 Mk, = 9
(0.70) (242) (1.66) (2.16) (2.13)| (7.05) (24.17) (16.59) (21.56) (21.34)| (63.42) (1753 (4928  (19406) (19208
Test G= 10 20 40 80 160 10 20 40 80 160 10 20 40 80 160

F Asymp. 9272 79.61 3230 19.04 13.08| 9717 89.46 6882 62.06 51.74 9998 99.99 99.97 99.98 99.99
SE-18f I 792 1244 1277 1269 10.64| 16.85 48.81 4638 53.15 46.60| 60.27 9443 99.55 99.92 99.98

R 598 1001 776 842 818 13.22 4588 38.19 4498 40.86| 4846 90.89 9858 99.89 99.97

Pairs 023 520 238 272 4.09 086 25,51 1394 2516 28.68 552 71.09 7758 9755 99.74

Eff. F Asymp. 1391 257 0.01 000 0.00| 2834 2535 075 004 003 8571 9145 58.86 61.75 48.79
SE-1°t T 928 1050 12.62 1191 1042| 19.16 4878 47.64 5395 5097 73.15 99.34 97.64 99.93 99.99
R 723 11.67 912 990 9.23| 16.03 50.74 4321 50.62 4841] 68.12 99.25 97.02 99.83 99.98

Notes: Authors’ calculation from 10,000 Monte Carlo simulations. For bootstrap methods, each experiment
consists of 199 bootstrap replications. The number in parenthesis is the concentration parameter divided by
k. assuming homoskedastic errors. The weights M, I" and R correspond to the multinomial, gamma, and
Rademacher weights, respectively. The sample sizes are 205, 410, 820, 1640 are 3280 observations for G = 20,
40, 80, and 160, respectively.

Table 4: Application: Economic Growth and Civil Conflict

Dependent Variable: Civil Conflict > 25

1) (2)
AGDP; —0.412 —1.132
(1.479) (1.403)
AGDP; ;1 —2.249** —2.547**
(1.074) (1.103)
15 P-test (cluster) AGDP; ; 5.739 4.491
p-value 0.003 0.011
15 F-test (cluster) AGDP; ;1 3.935 3.642
p-value 0.020 0.026
Kleibergen and Paap|(2006) rank-test 15.287 16.195
p-value 0.000 0.000
Included instruments 49 82

Notes: Number of observations are 743 with 41 unbalanced clusters. Standard errors, corrected
for arbitrary forms of heteroskedasticity and autocorrelation, are in parenthesis. The excluded
instruments are growth in rainfall at ¢ and growth in rainfall at ¢ — 1. In model (1) the included
exogenous variables are country specific time trends, log of the GDP per capita in 1979, log of the
proportion that a country is mountainous, log of the nation population at t — 1, an indicator for
the countries which are oil-exporters, ethnolinguistic fractionization, religious fractionization, and
measures of democracy. In model (2) the included exogenous variables are country specific dummies
and country specific trends.

++ Significant different from zero at 5% significant level.
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Table 5A: 95% Confidence Intervals, Wald, AR, and Bootstrapped Tests

Original Original Original Original Original Original
AJR Series AJR series, AJR Series, AJR series, AJR series, AJR series,
capped at Albouy capped at without without
250 campaign 250, Albouy contested contested
dummy campaign observations observations
dummy in Westand  in West and
Central Central
Africa Africa,
mortality
capped at
250
(1) ) 3 ) 5) ©)
No covariates
Wald-asymp [0.53,1.32]  [0.55,1.09] [0.34,1.84] [0.43,1.30] (0.50,1.24]  [0.51,1.03]
Wald-boot ME-eff [0.51,1.64]  [0.56,1.21] [0.35,3.31] 0.47,1.53] [0.47,1.55]  [0.53,1.15]
AR AJR [0.67,1.73]  [0.61,1.20] [0.64,3.96] [0.52,1.55] [0.62,1.62]  [0.57,1.12]
AR [0.65,2.16]  [0.61,1.49] [0.63,5.16] [0.55,2.17] [0.58,2.09]  [0.54,1.40]
AR-boot EE [0.65,2.20]  [0.61,1.53] [0.63,5.29] [0.55, 2.26] [0.59,2.35]  [0.54,1.47]
AR-boot SE-neff [0.64,2.10] [0.61,1.49] [0.61,6.84] [0.53,2.24] [0.60, 2.04] [0.56, 1.35]
F-stat p-value 0.000 0.000 0.014 0.000 0.000 0.000
F-boot p-value 0.014 0.001 0.053 0.004 0.015 0.001
Eff. F-boot p-value 0.000 0.001 0.046 0.003 0.014 0.001
With latitude
Wald-asymp [0.44,1.48]  [0.50,1.09] [0.16,2.15] [0.34,1.36] [0.43,1.35]  [0.47,1.04]
Wald-boot ME-eff [0.45,2.35]  [0.48,1.25] [-7.00,—0.13] U [0.35,1.74] 0.42,2.02]  [0.45,1.20]
0.33,6.19]
AR AJR [0.64,2.50]  [0.55,1.20] [0.61,34.78] [0.41,1.71] [0.59,2.08]  [0.51,1.14]
AR [0.61,7.43] [0.53,1.77] —00, —7.10] U [0.45, 3.48] [0.54,4.77] [0.46, 1.64]
[0.59, 4+00
AR-boot EE [0.61,4.99] [0.52,1.71] [0.57, 400 [0.41, 3.05] [0.57,6.13] [0.46,1.78]
AR-boot SE-neff [0.61,5.55]  [0.49,1.61]  —o0,—4.26]U [0.16, 3.66] [0.57,4.19]  [0.47,1.55]
[0.52, +00
F-stat p-value 0.006 0.000 0.053 0.002 0.004 0.000
F-boot p-value 0.057 0.006 0.142 0.024 0.061 0.007
Eff. F-boot p-value 0.052 0.005 0.130 0.020 0.058 0.006
With continent
dummies and
latitude
Wald-asymp [0.03,2.12]  [0.33,1.28] [0.25,2.62] [0.24,1.43] (0.17,1.82]  [0.37,1.30]
Wald-boot ME-eff [—6.57, —0.10] U [0.24,1.40]  [-11.69,11.65]  [—0.05,2.01] [0.32,3.79]  [0.30,1.44]
[0.30,6.42]
AR AJR —o0,—4.74|U  [0.31,1.53]  —oo,—1.16]U [0.13,2.21]  [0.47,20.55]  [0.41,1.56]
[0.46, 400 [0.37, 400
AR —o0,—1.71] U [0.17,1.81] —00,—0.79] U [0.09,7.74] [0.41, 400 [0.30,1.93]
[0.40, 400 [0.43, 400
AR-boot EE —00, —2.00] U [0.24,1.66] —00,—0.93] U [0.13,3.49] [0.42, +00 [0.33,1.71]
[0.42, +c0 [0.47, 400
AR-boot SE-neff  —oo,—1.21]U  [-0.06,1.78]  —o00,—047]U  [-0.25,8.64] (031,400  [0.10,1.90]
[0.31, +o0 [0.36, +00
F-stat p-value 0.096 0.005 0.185 0.027 0.056 0.003
F-boot p-value 0.175 0.016 0.295 0.082 0.161 0.017
Eff. F-boot p-value 0.153 0.011 0.269 0.059 0.140 0.000
(Continued).
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Table 5B: 95% Confidence Intervals, Wald, AR, and Bootstrapped Tests (Continued)

Original Original Original Original Original Original
AJR Series AJR series, AJR Series, AJR series, AJR series,  AJR series,
capped at Albouy capped at without without
250 campaign 250, Albouy contested contested
dummy campaign observations observations
dummy in Westand in West and
Central Central
Africa Africa,
mortality
capped at
250
@ @ ®) @) ©) (6)
With percent of
European descent
in 1975
Wald-asymp [0.30, 1.54] [0.34, 1.08] [~0.24,2.61] [0.13,1.34] (0.30,1.37]  [0.31,1.03]
Wald-boot ME-eff [0.41,3.25] 0.28,1.21] [~17.07,—0.03]U [0.13,1.84] 0.36,2.31]  [0.21,1.15]
[0.24, 15.55]
AR AJR [0.53,4.309] (0.36,1.21]  —o0,—2.30] U [0.11,1.96] 0.48,2.73]  [0.32,1.13]
[0.47, 400
AR [0.42, +00 [0.15,1.52] —o00,—1.51]U [0.10, 5.22] 0.34,9.12]  [0.09,1.28]
[0.44, 400
AR-boot EE [0.41, 400 [0.18,1.60]  —o0,—1.52]U 0.12,7.25]  [0.32,20.09]  [0.10,1.26]
[0.44, 400
AR-boot SE-neff [0.40, 400 [0.12,1.50]  —o00,—1.30]U  [—0.10,5.34] 0.33,5.20]  [0.06,1.29)]
[0.41, 400
F-stat p-value 0.025 0.000 0.153 0.012 0.015 0.000
F-boot p-value 0.087 0.006 0.243 0.035 0.079 0.005
Eff. F-boot p-value 0.082 0.006 0.223 0.030 0.073 0.005

Notes: All variables from (Acemoglu et al.,|2001). Dependent variable is log of GDP per capita in 1995. Right
hand side variable is protection against expropriation, instruments by log settler mortality. Column 2 uses
original settler mortality series, capped at 250 per 1,000 per annum. Column 3 uses original settler mortality
series from (Acemoglu et al.,2001) as the instruments includes Albouy’s campaign dummy. Column 4 do the
same as Column 3 but caps mortality at 250 per 1,000 per annum. Column 5 is the same as Column 1 but
drops the contested observations for West and Central Africa, and Column 6 is the same as Column 5 but caps
mortality at 250 per 1,000. The number of observations in Columns 1, 2, 3 and 4 are 62, with 35 the number of
clusters. In Columns 4 and 5, the number of observations are 51 with 34 clusters. For bootstrap methods, each
experiment consists of 1999 bootstrap replications.
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Table 6A: 95% Confidence Intervals, Wald, AR, and Bootstrapped Tests

Albouy Albouy Albouy preferred Albouy preferred
preferred preferred sample; campaign sample, capped at
sample sample, dummy 250; extended
without correction Albouy
Gambia campaign
dummy; without
Gambia
@) @ ®) )
No covariates
Wald-asymp [0.45,1.29] [0.52,0.97] [0.01,2.03] [0.49,1.17]
Wald-boot ME-eff [0.46,1.79] 0.53,1.03] [—9.42, 38.02] 0.53,1.42]
AR AJR 0.59,1.82] 0.55,1.02] —00, —4.20] U [0.43, +00 0.59,1.33]
AR MD 0.57,2.34] [0.54,1.15] —00,~2.19] U [0.46, +00 [0.56, 2.64]
AR-boot EE 0.57,2.64] [0.54,1.21] —00,-2.10] U [0.48, +00 [0.56, 2.25]
AR-boot SE-neff [0.57,2.63] [0.53,1.18] —00, —1.54] U [0.46, +c0 [0.54,2.38]
AR-boot D&M [0.56, 2.64] [0.53,1.20] —00, —1.70] U [0.46, +c0 [0.53,2.62]
F-stat p-value 0.002 0.000 0.102 0.000
F-boot p-value 0.026 0.003 0.183 0.017
Eff. F-boot p-value 0.024 0.002 0.165 0.013
With latitude
Wald-asymp [0.16,1.48] [0.34,0.93] [—0.93,2.73] [0.29,1.03]
Wald-boot ME-eff ~ [—2.04,4.16] [0.29,1.00] [—30.30, 27.55] [0.03,1.09]
AR AJR [0.42,19.04] 0.35,0.96] —00, 400 0.28,1.08]
AR —00, +00 0.20, 1.58] —00, +00 [—0.24,1.63]
AR-boot EE —00, +00 [0.26, 1.40] —00, +00 [0.22,1.52]
AR-boot SE-neff —00, 400 [0.16,1.36] —00, 400 [0.04,1.77]
AR-boot D&M —00, 400 [0.12,1.54] —00, 400 [0.04,1.93]
F-stat p-value 0.052 0.000 0.403 0.001
F-boot p-value 0.178 0.019 0.498 0.043
Eff. F-boot p-value 0.168 0.015 0.472 0.031
With continent
dummies and
latitude
Wald-asymp [~1.07,3.56] [0.08, 1.46] [—3.69,6.56] [0.00,1.37]
Wald-boot EME  [—18.46,20.01] [—0.02,1.99] [—49.73, 48.68] [—0.34,1.34]
AR AJR —00, —0.343] U 0.09,1.72] — 00, +00 [—0.11,1.29]
[0.107, 400
AR —00, +00 —00, —70.12] U —00, +00 [—0.94,2.05]
[—0.10, 400
AR-boot EE —00, 400 [0.04, 4.28] —00, 400 [—0.14,1.70]
AR-boot SE-neff —00, +00 [—0.21,22.79) —00, +00 [—0.36,1.90]
AR-boot D&M —00, 400 —00, —7.408] U —00, 00 [—0.48,4.21]
[—0.231, 400
F-stat p-value 0.330 0.007 0.583 0.003
E-boot p-value 0.439 0.056 0.631 0.036
Eff. F-boot p-value 0.404 0.037 0.584 0.016
(Continued).
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Table 6B: 95% Confidence Intervals, Wald, AR, and Bootstrapped Tests (Continued)

Albouy Albouy Albouy preferred  Albouy preferred
preferred preferred sample; campaign  sample, capped at
sample sample, dummy 250; extended
without correction Albouy
Gambia campaign
dummy; without
Gambia
@ @ ®G) €
With percent of
European descent
in 1975
Wald-asymp [~0.27,2.16] [0.18,1.12] [—1.11,3.38] [0.06,1.33]
Wald-boot ME-eff [—13.94,13.38] 0.21,1.41] [—26.57,26.53] [—0.20, 1.96]
AR AJR —00, —1.459] U 0.24,1.37] —00, 400 [—0.02, 1.90]
[0.322, +00
AR —00, 400 [0.07,3.08] —00, +00 —00, 400
AR-boot EE —00, 400 [0.07,2.52] —00, 400 [—0.66,4.92]
AR-boot SE-neff —00, +00 [0.03,2.47] —00, +00 [—1.13,45.09]
AR-boot D&M —00, +00 [0.03,3.47] —00, 400 —00, 400
F-stat p-value 0.168 0.001 0.368 0.022
F-boot p-value 0.290 0.026 0.472 0.074
Eff. F-boot p-value 0.275 0.021 0.452 0.057

Notes: All variables from (Acemoglu et al.,|2001). Dependent variable is log of GDP per capita in 1995. Right
hand side variable is protection against expropriation instrumented by log settler mortality. Column 1 uses uses
original settler mortality series from (Acemoglu et al.,|2001) as the instrument, but Albouy’s preferred sample
of 28 countries. Column 2 is the same as Column 1 but drops Gambia. Column 3 uses original settler mortality
series from (Acemoglu et al., 2001) as the instruments but includes Albouy’s campaign dummy. Column 4 is
the same as Column 3 uses the extended correction of (Acemoglu et al.,2012) of the campaign dummy, drops
Gambia, and caps mortality at 250. The number of observations is 28 in Columns 1 and 3, and 27 observations
in Columns 2 and 4. There is no cluster. For bootstrap methods, each experiment consists of 1999 bootstrap

replications.
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Figure 1: Power Curve for Testing Hy : 6 = 6 at 5% significance level, using p = 0.20
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Notes: Authors’ calculation from 10,000 Monte Carlo simulations. For bootstrap
methods, each experiment consists of 499 bootstrap replications. The bootstrap tests uses
Rademacher weights. Sample size is 410 observations, 20 clusters.




Figure 2: Power Curve for Testing Hy : 6§ = 6y at 5% significance level, using p = 0.95
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For bootstrap

methods, each experiment consists of 499 bootstrap replications. The bootstrap tests uses
Rademacher weights. Sample size is 410 observations, 20 clusters.




Figure 3A: Asymptotic and wild bootstrap tests, 90% and 95% confidence regions.
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Notes: Dependent variable is Civil Conflict > 25 Deaths. The right hand side endogenous variables are the
economic growth rate and its lagged value, instrumented by growth in rainfall at ¢ and growth in rainfall at
t — 1. The included exogenous variables are country specific time trends, log of the GDP per capita in 1979,
log of the proportion that a country is mountainous, log of the nation population at ¢t — 1, an indicator for the
countries which are oil-exporters, ethnolinguistic fractionization, religious fractionization, and measures of
democracy. Original Miguel et al|(2004) data set is used. For bootstrap methods, each experiment consists
of 1999 bootstrap replications, using Rademacher weights.
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Figure 3B: Asymptotic and wild bootstrap tests, 90% and 95% confidence regions.

Wald Asymp. Wald-boot ME-eff

< -2f 1 < =2 E
o | al |
o | o |
S | ol |

-10F g -10+ g
N R N R
0, 0,
AR Asymp. AR-boot SE-neff

-10 -8 -6 -4 -2 [) 2 4 6 -10 -8 ) -4 -2 [) 2 4 6
23 0,

Notes: Dependent variable is Civil Conflict > 25 Deaths. The right hand side endogenous variables are the
economic growth rate and its lagged value, instrumented by growth in rainfall at ¢t and growth in rainfall
at ¢t — 1. The included exogenous variables are country specific dummies, country specific trends. Original
Miguel et al.| (2004) data set is used. For bootstrap methods, each experiment consists of 1999 bootstrap
replications, using Rademacher weights.
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